Final Report (Draft-1, September 29, 2007)

Dynamic Spot Weld Testing

Prepared by

Y. J. Chao and Y. Kim Mechanical Engineering University of South Carolina

September 2007

Prepared for

Committee on Strain Rate Characterization Auto/Steel Partnership 2000 Town Center Drive Suite 320 Southfield, MI 48075

TABLE OF CONTENTS

TT 11	6.0		Page
Table	e of C	contents	2
Exec	utive	Summary	3
1		Introduction	4
2		Materials and test specimens	4
3	•	Testing	6
	3.1	Static Test	6
	3.2	Dynamic Test	8
4		Test Results	11
	4.1	Static Test Results	11
	4.2	Dynamic Test Results	16
5		Mixed Mode Test and Results	22
	5.1	Specimen	22
	5.2	Test Fixture and Set-up	23
	5.3	Testing condition	24
	5.4	Test Results	25
6	•	Conclusions	27
7		Appendix	27
8		Data Computer Disk (CD)	28
9	•	Acknowledges	28
1	0.	References	29

EXECUTIVE SUMMARY

Static and dynamic strength tests were performed for spot welded specimens made of dual-phase (DP780) and mild steels (DQSK). Steels were provided by A/SP members and welds were made by RoMan Engineering. Lap-shear (LP) and cross-tension (CT) as well as a newly designed mixed mode specimens were tested using MTS hydraulic universal testing machine for static and drop weight tower for dynamic tests. Three weld nugget sizes for each steel and specimen geometry (LP and CT) were made. In the mixed mode test, only DP780 of one weld size was tested. Load and displacement as functions of time and failure mode of the spot welds were recorded in the tests. Tables 1, 2 and 3 below give a summary of the test.

Test	Material	Specimen type	Number of	Failure mode
			specimens	
			competed	
Static	DP	LS	6	Interfacial (1)
				Pull-out (5)
	DP	СТ	6	Interfacial (2)
				Pull-out (4)
	DQSK	LS	6	Pull-out (6)
	DQSK	CT	6	Pull-out (6)

Table 1 Summary for the static test matrix

	10010 =			
Test	Material	Specimen type	Number of specimens competed (loading velocity)	Failure mode
Dynamic	DP	LS	9 (5.6 m/sec) 9 (3.6 m/sec)	Interfacial (2) Pull-out (16)
	DP	СТ	10 (5.8 m/sec) 4 (3.6 m/sec) 5 (2.6 m/sec)	Interfacial (3) Pull-out (16)
	DQSK	LS	9 (5.6 m/sec) 9 (3.6 m/sec)	Interfacial (8) Pull-out (10)
	DQSK	СТ	8 (5.8 m/sec) 6 (3.6 m/sec) 4 (2.6 m/sec)	Pull-out (18)

Table 2 Summary for the dynamic test matrix

Table 3 Summary for the mixed-mode test matrix

Test	Material	Specimen type	Number of specimens competed	Failure mode
Static	DP	Mixed	7	Interfacial (5) Pull-out (2)
Dynamic	DP	Mixed	9	Interfacial (6) Pull-out (3)

1. Introduction

Advanced high strength steels (AHSS) have gradually been adopted for auto body construction. In this joint project with Oak Ridge National Laboratory, dynamic and static strength tests for DP780 and mild steels (DQSK) were performed at the University of South Carolina (USC). Lap-shear (LS) and cross tension (CT) specimens with three weld nugget sizes for each specimen geometry were used. The three nugget sizes were selected such that one is smaller, one is equal (medium) and one is larger than the weld nugget size determined from the formula $d = 5\sqrt{t}$, where *d* is the diameter of the weld nugget and *t* the thickness of the sheet. In addition, a newly designed mixed mode specimen and fixture were also tested which was made of DP780 with weld nugget size of 5.9 mm, i.e. the large size. Coupons composing the specimens were cut from sheets and all welds were made by RoMan Engineering.

Force versus displacement curves were generated and the failure mode of each specimen was recorded from the tests. The test data are useful in developing a dynamic failure criterion of spot welds made of advanced high strength steels.

This report summarizes the work performed at USC and is composed of introduction (this section), materials and test specimens (section 2), testing program (section 3), test results (section 4), mixed mode test and results (section 5), conclusions (section 6) and appendix (section 7) specifying the specimen label designation. A CD (section 8) is attached with this report which contains all test data in digital form.

2. Materials and Test Specimens

In the first phase of the testing program, two materials (DP780 and DQSK210), two types of specimens (LS and CT), and three nugget sizes (small, medium and large) were tested under static and dynamic loading conditions. Detailed specimen dimensions, materials, and nominal weld nugget size are shown in Table 4.

Figures 1 and 2 show the geometries for the LS and CT specimens, respectively. Each specimen is from two 2 in by 6 in coupons spot welded together. Specimens of DP steel are of 1.15 mm thick and mild steel specimens 1.00 mm thick. The dimensions of the LS and CT follow the ANSI/AWS/SAE/D8.9-97 [1].

Material	Specimen Type	Dimension (length x width x thickness unit: mm)	Nominal Weld Diameter (mm)
DP780	Lap shear	152 x 51 x 1.15	4.3
DP780	Cross tension	152 x 51 x 1.15	4.3
DP780	Lap shear	152 x 51 x 1.15	5.1
DP780	Cross tension	152 x 51 x 1.15	5.1
DP780	Lap shear	152 x 51 x 1.15	5.9
DP780	Cross tension	152 x 51 x 1.15	5.9
DQSK210	Lap shear	152 x 51 x 1.00	4.0
DQSK210	Cross tension	152 x 51 x 1.00	4.0
DQSK210	Lap shear	152 x 51 x 1.00	4.8
DQSK210	Cross tension	152 x 51 x 1.00	4.8
DQSK210	Lap shear	152 x 51 x 1.00	5.5
DQSK210	Cross tension	152 x 51 x 1.00	5.5

Table 4 Specifications for the test specimens

Figure 1 Configuration of lap-shear specimen

Figure 2 Configuration of cross-tension specimen

3. Testing Programs

The purpose of this test is to generate the load and displacement curves as functions of time for specimens under static and dynamic impact loading conditions. From these data, the strength (i.e. the peak load), energy absorption (from the load-displacement curve), and failure mode of the spot welds can then be determined. The details on each test apparatus are discussed in the following sections.

3.1 Static test

Static tests were conducted using a MTS universal tensile testing system with a displacement rate of 0.001 in/sec. Extensometer was used for the displacement measurement of the LS specimens (Figure 3) and a fixture was used for the CT specimens (Figure 4). The gage length used with the extensometer for all the LS specimens was set at 165 mm, symmetric with respect to the weld nugget. The two clips to the specimen are far away from the weld to avoid any interference from the rotation of the weld nugget region during loading. Machine displacement was used for the CT specimen tests.

Figure 3 Set-up of lap-shear specimen for the static test

(a)

(b)

Figure 4 Set-up for the static cross-tension specimen test; (a) test fixture and (b) set-up at MTS machine

3.2 Dynamic test

Dynamic test was conducted using the Instron Drop Weight Tower machine model 8140 (Figure 5). It has a (minimum) drop weight of 225 Kg (496 lbf) and a maximum drop height of 1.60 m (63.5 in). Two piezometric load cells (PCB model 200C20) were used to measure the impact force during the dynamic tests. They are mounted on two sides of the fixture frame used to hold the specimen in place. During the test, symmetric reaction forces were typically found from the two load cells. The resolution of the load cell is 1.3 Newton and the capacity is 90 kN with a frequency response up to 40 KHz. All the channels for data acquisition go through a PCB board (model 483B05), amplifier and signal conditioner. The data were recorded by LabView software with a National Instruments data acquisition board (model: PCI-MIO-16). Dynamic tests for LS and CT specimens were done under three impact velocity; high (5.8 m/sec), medium (3.6 m/sec) and low speed (2.6 m/sec).

Fig. 5 Instron Drop Weight Tower

During the dynamic impact test the LS specimen is held by the grips that fit into the slots of fixtures (Figure 6). These grips are wedge type to prevent from slipping during the test. The upper fixture is supported by two load cells that measure the reaction forces while the lower fixture is under impact from the forks of the drop weight.

Figure 6 Set-up of lap-shear specimen for the dynamic test

The CT specimen is held by a fixture shown in Figure 7. Two flat heads are under impact load from the forks of the drop weight and the reaction forces are measured from the load cells located under the other two bolted heads.

Figure 7 Set-up of cross-tension specimen for the dynamic test

The impact force is obtained from the dynamic load cell installed at the fixture and the displacement is calculated from the drop weight as follows.

From Newton's second law of motion,

$$\sum F = ma \tag{1}$$

where $\sum F$ = vector sum of forces acting on the drop weight

= dead weight – reaction forces measured from the load cells

m = mass of the drop weight

a = acceleration

Once acceleration is known the velocity can be calculated by Equation (2).

$$\int_{o}^{t} a dt = \int_{o}^{t} dv = v - v_0 \tag{2}$$

where the initial velocity, v_o , is measured when the drop weight passes through a knife edge installed on the drop weight tower machine, right before the forks hit the fixture.

Equation (2) is implemented by a numerical integration scheme (Trapezoidal rule) as

$$\int_{t_1}^{t_n} a dt \approx \sum_{i=1}^{n-1} (t_{i+1} - t_i) \frac{a_{i+1} + a_i}{2}$$
(3)

Finally the displacement is

$$\int_{o}^{t} v dt = \int_{o}^{t} ds = s - s_0 \tag{4}$$

where s is the displacement (or distance) measured from the initial height of the knife edge, s_o .

4. Test Results

4.1 Static Test Results

A summary of results from static tests is shown in Table 5. Actual experimental data and the force versus displacement curves can be found in the CD attached with this report. The designation of specimen/file names are listed in Table A-1 of Appendix. Note there are two specimen numbers for each specimen; i.e. a USC specimen number and a RoMan specimen number (as received). They are marked on each specimen.

Three types of failure modes were identified; i.e. interfacial, pull-out (one side) and pullout both-sides. Photos of specimens failed in these three modes are provided in Figure 8.

Specimen #	Material	Dimension	Nominal	Max.	Failure
(RoMan's #)		(length x	Weld	Strength	Mode
		width x	Diameter	(Newton)	
		thickness	(mm)		
		unit: mm)			
DP1CS001	DP780	152 x 51 x 1.15	4.3	5765	Interfacial
(CTR1-12)					
DP1CS002	DP780	152 x 51 x 1.15	4.3	6210	Interfacial
(CTR1-13)					
DP1LS001	DP780	152 x 51 x 1.15	4.3	13056	Interfacial
(TSR1-22)					
DP1LS002	DP780	152 x 51 x 1.15	4.3	13171	Pullout Both-
(TSR1-23)					Sides
DP2CS001	DP780	152 x 51 x 1.15	5.1	6555	Pullout
(CTR2-12)					
DP2CS002	DP780	152 x 51 x 1.15	5.1	6732	Pullout
(CTR2-13)					
DP2LS001	DP780	152 x 51 x 1.15	5.1	14843	Pullout Both-
(TSR2-22)					Sides
DP2LS002	DP780	152 x 51 x 1.15	5.1	15226	Pullout Both-
(TSR2-23)					Sides
DP3CS001	DP780	152 x 51 x 1.15	5.9	7253	Pullout
(CTR3-12)					
DP3CS002	DP780	152 x 51 x 1.15	5.9	7376	Pullout
(CTR3-13)					
DP3CS003	DP780	152 x 51 x 1.15	5.9	6954	Pullout
(CTR3-14)					
DP3LS001	DP780	152 x 51 x 1.15	5.9	17105	Pullout Both-
(TSR3-22)					Sides
DP3LS002	DP780	152 x 51 x 1.15	5.9	17020	Pullout Both-
(TSR3-23)					Sides
DQSK1CS001	DQSK	152 x 51 x 1.0	4.0	3212	Pullout
(CTR4-23)					

Table 5 Summary for the static test data

Specimen # (RoMan's #)	Material	Dimension (length x width x	Nominal Weld Diameter	Max. Strength (Newton)	Failure Mode
		thickness unit: mm)	(mm)		
DQSK1CS002 (CTR4-24)	DQSK	152 x 51 x 1.0	4.0	3419	Pullout
DQSK1LS001 (TSR4-22)	DQSK	152 x 51 x 1.0	4.0	4286	Pullout Both- Sides
DQSK1LS002 (TSR4-23)	DQSK	152 x 51 x 1.0	4.0	4447	Pullout
DQSK2CS001 (CTR5-17)	DQSK	152 x 51 x 1.0	4.8	3419	Pullout
DQSK2CS002 (CTR5-19)	DQSK	152 x 51 x 1.0	4.8	3427	Pullout
DQSK2LS001 (TSR5-22)	DQSK	152 x 51 x 1.0	4.8	4876	Pullout Both- Sides
DQSK2LS002 (TSR5-23)	DQSK	152 x 51 x 1.0	4.8	5029	Pullout Both- Sides
DQSK3CS001 (CTR6-29)	DQSK	152 x 51 x 1.0	5.5	3941	Pullout Both- Sides
DQSK3CS002 (CTR6-30)	DQSK	152 x 51 x 1.0	5.5	4002	Pullout
DQSK3LS001 (TSR6-22)	DQSK	152 x 51 x 1.0	5.5	5888	Pullout Both- Sides
DQSK3LS002 (TSR6-23)	DQSK	152 x 51 x 1.0	5.5	5873	Pullout Both- Sides

Table 5 continued

Figure 8 Three distinguished failure modes from the tests; (a) pull-out on both sides,(b) pull-out, and (c) interfacial The specimen number listed at the first column of Table 5 follows the identification system shown in Figure 9.

Figure 9 Specimen identification numbering system

Typical load versus displacement curves for the medium sized weld nugget specimens are shown in Figures 10-13.

Figure 10 Force versus displacement curves for cross-tension specimens of medium nugget diameter; DP780 under static load

Figure 11 Force versus displacement curves for lap-shear specimens of medium nugget size; DP780 under static load

Figure 12 Force versus displacement curves for cross-tension specimens of medium nugget size; mild steel under static load

Figure 13 Force versus displacement curves for lap-shear specimens of medium nugget size in mild steel under static load

4.2 Dynamic Test Results

A summary for the results from dynamic tests is shown in Table 6. Actual experimental data and the recorded force versus displacement curves can be found in the CD attached with this report. The file names are listed in Appendix (Table A-2).

Specimen #	Material	Dimension	Nominal	Peak Load	Failure
(RoMan's #)		(length x	Weld	(Newton)	Mode
		width x	Diameter		
		thickness	(mm)		
		unit: mm)			
DP1CDH001	DP780	152 x 51 x 1.15	4.3	7329	Interfacial
(CTR1-16)					
DP1CDH002	DP780	152 x 51 x 1.15	4.3	7506	Pullout
(CTR1-18)					
DPICDM001	DP/80	152 x 51 x 1.15	4.3	6623	Interfacial
(CTRI-II)	DDECO	1.50 51 1.15	4.2	50.41	
DP1CDM002	DP780	152 x 51 x 1.15	4.3	7241	Interfacial
(CTR1-15)					
DP1LDH001	DP780	152 x 51 x 1.15	4.3	14023	Pullout
(ISRI-25)	DDZ00	150 51 115	1.2	12000	
DPILDH002	DP/80	152 x 51 x 1.15	4.3	13089	Pullout Both-
(ISRI-26)	DD700	150 51 1.15	4.2	12021	Sides
DPILDH003	DP/80	152 x 51 x 1.15	4.3	12921	Interfacial
(15K1-21)	DD790	152 - 51 - 1 15	4.2	12(20	Dullant
DPILDM001 (TSD1 27)	DP/80	152 X 51 X 1.15	4.3	13629	Pullout
(ISRI-27)	DD790	152 - 51 - 1 15	4.2	129.42	Dullant
(TSD1 20)	DP/80	152 X 51 X 1.15	4.5	12845	Pullout
(15K1-29) DD11 DM002	DD790	152 - 51 - 1 15	4.2	12207	Dullant
(TSP1, 36)	DF / 80	152 X 51 X 1.15	4.5	15507	Fullout
DP2CDH001	DP780	152 x 51 x 1 15	5.1	8063	Pullout
(CTR2-14)	D1 / 80	152 X 51 X 1.15	5.1	8005	1 unout
DP2CDH002	DP780	152 x 51 x 1 15	5.1	9594	Pullout
(CTR2-15)	D1 / 00	152 X 51 X 1.15	5.1	<u> </u>	1 unout
DP2CDH003	DP780	152 x 51 x 1 15	5.1	8687	Pullout
(CTR2-16)	D1 / 00	102 X 01 X 1.10	5.1	0007	i unout
DP2CDH004	DP780	152 x 51 x 1.15	5.1	8850	Pullout
(CTR2-22)			••••		
DP2CDH005	DP780	152 x 51 x 1.15	5.1	9098	Pullout
(CTR2-23)					
DP2CDH006	DP780	152 x 51 x 1.15	5.1	8295	Pullout
(CTR2-24)					
DP2CDL001	DP780	152 x 51 x 1.15	5.1	8135	Pullout
(CTR2-18)					
DP2CDL002	DP780	152 x 51 x 1.15	5.1	8913	Pullout
(CTR2-20)					
DP2CDM001	DP780	152 x 51 x 1.15	5.1	8090	Pullout
(CTR2-25)					
DP2CDM002	DP780	152 x 51 x 1.15	5.1	8093	Pullout
(CTR2-26)					

Table 6 Summary of the dynamic test data

Specimen # (RoMan's #)	Material	Dimension (length x width y	Nominal Weld Diameter	Peak Load (Newton)	Fracture Mode
		thickness	(mm)		
		unit: mm)			
DP2LDH001	DP780	152 x 51 x 1.15	5.1	15641	Pullout
(1SR2-24)	DD700	152 51 115	<u> </u>	15(0)	
DP2LDH002 (TSD2 25)	DP/80	152 x 51 x 1.15	5.1	15696	Pullout Both-
(15R2-25)	DD790	152 51 1 15	5 1	14014	Interfacial
(TSP2 28)	DF / 80	152 X 51 X 1.15	5.1	14914	Internaciai
DP2LDM001	DP780	152 x 51 x 1 15	5.1	16880	Pullout Both-
(TSR2-36)	D1700	152 X 51 X 1.15	5.1	10000	Sides
DP2LDM002	DP780	152 x 51 x 1.15	5.1	14950	Pullout
(TSR2-37)					
DP2LDM003	DP780	152 x 51 x 1.15	5.1	15532	Pullout Both-
(TSR2-30)					Sides
DP3CDH001	DP780	152 x 51 x 1.15	5.9	10529	Pullout
(CTR3-24)					
DP3CDH002	DP780	152 x 51 x 1.15	5.9	10109	Pullout
(CTR3-26)					
DP3CDM001	DP780	152 x 51 x 1.15	5.9	8747	Pullout
(CTR3-23)	DDT00	150 51 115	5.0	10157	D 11 /
DP3CDM002	DP/80	152 x 51 x 1.15	5.9	10157	Pullout
$\frac{(C1K3-23)}{DB2CDM002}$	DD780	152 y 51 y 1 15	5.0	8700	Dullout
(CTR3-27)	DF / 80	132 X 31 X 1.13	5.9	8700	runout
DP3LDH001	DP780	152 x 51 x 1 15	59	18052	Pullout Both-
(TSR3-29)	D1 /00	152 X 51 X 1.15	5.9	10052	Sides
DP3LDH002	DP780	152 x 51 x 1.15	5.9	17891	Pullout Both-
(TSR3-25)					Sides
DP3LDH003	DP780	152 x 51 x 1.15	5.9	17882	Pullout Both-
(TSR3-40)					Sides
DP3LDM001	DP780	152 x 51 x 1.15	5.9	17571	Pullout Both-
(TSR3-38)					Sides
DP3LDM002	DP780	152 x 51 x 1.15	5.9	19712	Pullout Both-
(TSR3-21)	DDE00	1.50 51 1.15		10100	Sides
DP3LDM003	DP/80	152 x 51 x 1.15	5.9	18182	Pullout Both-
(15K3-45)	DOSK	152 - 51 - 10	4.0	2205	Sides
UQSKICDHUUI	DUSK	152 X 51 X 1.0	4.0	3293	Pullout
$\frac{(C1K4-36)}{DOSK1CDH002}$	DOSK	$152 \times 51 \times 10$	4.0	3503	Dullout
(CTR4-5)	DUSK	132 X 31 X 1.0	ч.U	3303	
DOSK1CDL001	DOSK	152 x 51 x 1 0	4.0	3115	Pullout
(CTR4-37)	2 2011	102 A 01 A 1.0			- unout
DQSK1CDL002	DQSK	152 x 51 x 1.0	4.0	3113	Pullout
(CTR4-6)					

Table 6 Continued

Specimen # (RoMan's #)	Material	Dimension (length x	Nominal Weld	Peak Load (Newton)	Fracture Mode
		width x thickness	Diameter (mm)	· · · ·	
		unit: mm)	()		
DQSK1LDH001	DQSK	152 x 51 x 1.0	4.0	5017	Interfacial
(TSR4-24)					
DQSK1LDH002	DQSK	152 x 51 x 1.0	4.0	5564	Interfacial
(TSR4-25)					
DQSK1LDH003	DQSK	152 x 51 x 1.0	4.0	4775	Interfacial
(1SR4-21)	DOSK	152 51 10	1.0	5250	Lutin Control
DQSK1LDM001 (TSP4 26)	DQSK	152 x 51 x 1.0	4.0	5359	Interfacial
(13K4-20)	DOSK	$152 \times 51 \times 10$	4.0	1773	Interfacial
(TSR4-27)	DQSK	152 X 51 X 1.0	4.0	4775	Interfacial
DOSK1LDM003	DOSK	152 x 51 x 1 0	4 0	5384	Interfacial
(TSR4-35)	DQUI	102 101 110	1.0	2201	Internation
DQSK2CDH001	DQSK	152 x 51 x 1.0	4.8	3526	Pullout
(CTR5-21)					
DQSK2CDH002	DQSK	152 x 51 x 1.0	4.8	4376	Pullout
(CTR5-22)					
DQSK2CDH003	DQSK	152 x 51 x 1.0	4.8	4134	Pullout
(CTR5-25)					
DQSK2CDH004	DQSK	152 x 51 x 1.0	4.8	3625	Pullout
(CTR5-34)	DOGV	152 51 10	4.0	4000	
DQSK2CDM001	DQSK	152 x 51 x 1.0	4.8	4800	Pullout
(C1K3-20) DOSK2CDM002	DOSK	$152 \times 51 \times 10$	18	4172	Pullout
(CTR5-33)	DQSK	152 X 51 X 1.0	4.0	41/2	runout
DOSK2CDM003	DOSK	152 x 51 x 1 0	48	3554	Pullout
(CTR5-36)	DQUI	102 101 110	1.0	5551	1 unout
DQSK2LDH001	DQSK	152 x 51 x 1.0	4.8	6127	Pullout
(TSR5-24)	-				
DQSK2LDH002	DQSK	152 x 51 x 1.0	4.8	6020	Pullout
(TSR5-25)					
DQSK2LDH003	DQSK	152 x 51 x 1.0	4.8	6021	Interfacial
(TSR5-21)					
DQSK2LDM001	DQSK	152 x 51 x 1.0	4.8	6289	Pullout
(TSR5-26)	DOGV	152 51 10	4.0	(100	
DQSK2LDM002	DQSK	152 x 51 x 1.0	4.8	6108	Pullout
(15K3-27)	DOSK	$152 \times 51 \times 10$	18	5080	Interfacial
(TSR5-46)	DUSK	152 X 51 X 1.0	7.0	3700	meriaciai
DOSK3CDH001	DOSK	152 x 51 x 1 0	5.5	4169	Pullout
(CTR6-39)	2 2012	102 A 01 A 1.0	0.0		- unout
DQSK3CDH002	DQSK	152 x 51 x 1.0	5.5	4533	Pullout
(CTR6-35)					

Table 6 Continued

Specimen #	Material	Dimension	Nominal	Peal Load	Failure
(RoMan's #)		(length x	Weld	(Newton)	Mode
		width x	Diameter		
		thickness	(mm)		
		unit: mm)			
DQSK3CDL001	DQSK	152 x 51 x 1.0	5.5	4362	Pullout
(CTR6-37)					
DQSK3CDL002	DQSK	152 x 51 x 1.0	5.5	4483	Pullout
(CTR6-36)					
DQSK3CDM001	DQSK	152 x 51 x 1.0	5.5	4207	Pullout
(CTR6-40)					
DQSK3CDM002	DQSK	152 x 51 x 1.0	5.5	4396	Pullout
(CTR6-38)					
DQSK3LDH001	DQSK	152 x 51 x 1.0	5.5	7225	Pullout
(TSR6-25)					
DQSK3LDH002	DQSK	152 x 51 x 1.0	5.5	7916	Pullout
(TSR6-26)					
DQSK3LDH003	DQSK	152 x 51 x 1.0	5.5	7336	Pullout
(TSR6-21)					
DQSK3LDM001	DQSK	152 x 51 x 1.0	5.5	7358	Pullout
(TSR6-27)					
DQSK3LDM002	DQSK	152 x 51 x 1.0	5.5	7448	Pullout
(TSR6-28)					
DQSK3LDM003	DQSK	152 x 51 x 1.0	5.5	7088	Pullout
(TSR6-29)					

Table 6 Continued

Typical load versus displacement curves for specimens having medium sized weld nugget in DP780 material are shown in Figure 14-17.

Fig. 14 Force versus displacement; CT specimen under dynamic load (DP780, medium nugget size, high speed impact)

Fig. 15 Force versus displacement; CT specimen under dynamic load (DP780, medium nugget size, medium speed impact)

Fig. 16 Force versus displacement; LS specimen under dynamic load (DP780, medium nugget size, high speed impact)

Fig. 17 Force versus displacement; LS specimen under dynamic load (DP780, medium nugget size, medium speed impact)

5. Mixed Mode Test and Results

5.1 Specimen

The geometry and dimensions for the mixed-mode specimens are shown in Figure 18. Static and dynamic tests were performed only for DP780 steel with 1.15 mm thickness and 5.9 mm nugget diameter. The specimen was designed such that a mixed bending, torsion, and tension can be applied to the weld and the load mixity can be varied.

5.2 Test Fixture and set up

Static and dynamic tests for mixed-mode specimens were performed by the MTS and Drop Weight Tower Machine, respectively. Various load mixity was achieved by varying the loading angles as shown in Figure 19. Figures 19 and 20 show the set-up for the static and dynamic tests, respectively.

Figure 19 Set-up of mixed-mode fixture for the static test (loading angle, $\theta = 30^{\circ}$)

Figure 20 Set-up of mixed-mode fixture for the dynamic test

5.3 Test conditions

Test conditions for the static and dynamic tests are the same as those described in Sections 3.1 and 3.2 for LP and CT specimens, except the fixture. Three loading angles are considered, i.e. 0° , 30° and 90° (Figure 21). The dynamic tests were done only with the impact speed at 5.4 m/sec, which is the highest speed of the drop weight machine. The specimen number listed at the first column of Table 7 follows the identification system shown in Figure 21.

Figure 21 Specimen identification numbers for mixed-mode specimen

5.4. Test Results

A summary of the results from mixed-mode tests is shown in Table 7. Actual experimental data and the force versus displacement curves can be found in the CD attached to this report. The file names are listed in Appendix (Table A-3).

Specimen #	Material	Loading	Nominal	Max.	Fracture
(RoMan's #)		condition	Weld	Strength	Mode
			Diameter	(Newton)	
DDM00501	DD790	statio	(mm) 5.0	0612	Interfacial
$(\Delta 3)$	DF / 80	static	5.9	9015	Interfacial
DPM00S02	DP780	static	5.9	8747	Interfacial
(A6)	D1 / 00	Statie	5.9	0/1/	Interfactur
DPM00S03	DP780	static	5.9	9345	Interfacial
(A9)					
DPM30S01	DP780	static	5.9	2445	Interfacial
(A4)					
DPM30S02	DP780	static	5.9	3097	Pull-out
(A7)					
DPM90S01	DP780	static	5.9	1678	Pull-out
(A5)					
DPM90S02	DP780	static	5.9	1372	Interfacial
(A8)					
DPM00D01	DP780	dynamic	5.9	9390	Interfacial
(A10)	DD790	da manuta	5.0	121(9	Interfecial
$(\mathbf{P1})$	DP/80	dynamic	5.9	12108	Interfacial
	DP780	dynamic	5.9	10630	Interfacial
(B2)	D1 / 00	dynamic	5.7	10050	Interfacial
DPM30D01	DP780	dynamic	59	11932	Interfacial
(B3)	21,00	a j nume	0.5	11,02	
DPM30D02	DP780	dynamic	5.9	15946	Interfacial
(B4)		-			
DPM30D03	DP780	dynamic	5.9	16201	Interfacial
(B6)					
DPM90D01	DP780	dynamic	5.9	7951	Pull-out
(B8)					
DPM90D02	DP780	dynamic	5.9	5913	Pull-out
(B9)	DDECC			5271	
DPM90D03	DP780	dynamic	5.9	5271	Pull-out
(B10)					

Table 7 Summary for the mixed-mode test data

Typical load versus displacement curves for the mixed-mode specimens are shown in Figures 22 and 23.

Fig. 22 Force versus displacement for mixed-mode specimen under static load (DP material, loading angle = 0°)

Fig. 23 Force versus displacement for mixed-mode specimen under dynamic load (DP material, loading angle = 0°)

6. Conclusions

The common characteristics of the test data show that

- (1) The peak load (or the strength) increases with weld nugget size.
- (2) As the nugget diameter decreases the specimens are more prone to interfacial mode of failure.
- (3) The peak load for LS specimen is higher than that for CT specimen under the same test conditions and weld configuration.

Comparing the two materials tested under the same other conditions,

(1) DP780 steel shows much higher peak load than mild steel.

(2) The increase of the peak load with impact speed is more in mild steel than in DP780.

It is observed that in mixed-mode tests when the loading angle is 90° most specimens had the pull-out mode of failure while the interfacial failure mode prevailed in the other two loading angles (0° , 30°).

7. Appendix

Experimental data and the force versus displacement curves are provided in a separate CD attached with this report. This appendix lists the file names for the static tests, dynamic tests and mixed mode tests in Tables A-1, A-2 and A-3 respectively.

Loading condition	Material	File name
Static	DP780	DP1CS
		DP1LS
		DP2CS
		DP2LS
		DP3CS
		DP3LS
	Mild steel	DQSK1CS
		DQSK1LS
		DQSK2CS
		DQSK2LS
		DQSK3CS
		DQSK3LS

Table A-1: File names for static test data

Loading condition	Material	File name
Dynamic	DP780	DP1CDH
		DP1CDM
		DP1LDH
		DP1LDM
		DP2CDH
		DP2CDL
		DP2CDM
		DP2LDH
		DP2LDM
		DP3CDH
		DP3CDM
		DP3LDH
		DP3LDM
	Mild steel	DQSK1CDH
		DQSK1CDL
		DQSK1LDH
		DQSK1LDM
		DQSK2CDH
		DQSK2CDM
		DQSK2LDH
		DQSK2LDM
		DQSK3CDH
		DQSK3CDL
		DQSK3CDM
		DQSK3LDH
		DQSK3LDM

Table A-3: File names for the mixed-mode test data

Loading condition	Material	File name
Mixed-mode static	DP780	DPM00S
		DPM30S
		DPM90S
Mixed-mode dynamic	DP780	DPM00D
		DPM30D
		DPM90D

8. Data Computer Disk (CD)

A CD containing test data and load versus displacement curves for all test specimens is attached here.

9. Acknowledgement

The authors would like to thank all team members from the A/SP Committee on Strain Rate Characterization for their constant support and encouragement. In particular, the assistance from Drs. Kathy Wang and Min Kuo in acquiring the materials and working with RoMan Engineering is greatly appreciated. Additionally, the professional support from Mr. Pat Villano of A/SP is also noted.

10. References

[1] ANSI/AWS/SAE/D8.9-97, Recommended Practices for Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, American Welding Society, 1997.