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Modification of the Gurson Model for shear failure
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Abstract

Recent experimental evidence points to limitations in characterizing the critical strain in ductile fracture solely on the basis of
stress triaxiality. A second measure of stress state, such as the Lode parameter, is required to discriminate between axisymmetric
and shear-dominated stress states. This is brought into the sharpest relief by the fact that many structural metals have a fracture
strain in shear, at zero stress triaxiality, that can be well below fracture strains under axisymmetric stressing at significantly higher
triaxiality. Moreover, recent theoretical studies of void growth reveal that triaxiality alone is insufficient to characterize important
growth and coalescence features. As currently formulated, the Gurson Model of metal plasticity predicts no damage change with
strain under zero mean stress, except when voids are nucleated. Consequently, the model excludes shear softening due to void
distortion and inter-void linking. As it stands, the model effectively excludes the possibility of shear localization and fracture under
conditions of low triaxiality if void nucleation is not invoked. In this paper, an extension of the Gurson model is proposed that
incorporates damage growth under low triaxiality straining for shear-dominated states. The extension retains the isotropy of the
original Gurson Model by making use of the third invariant of stress to distinguish shear dominated states. The importance of the
extension is illustrated by a study of shear localization over the complete range of applied stress states, clarifying recently reported
experimental trends. The extension opens the possibility for computational fracture approaches based on the Gurson Model to be
extended to shear-dominated failures such as projectile penetration and shear-off phenomena under impulsive loadings.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The role of stress triaxiality (defined as σm/σe with mean stress σm = σkk/3 and effective stress σe = √
3sij sij /2

with sij as the stress deviator) in ductile fracture of ductile structural metals is well known. Much experimental data
shows a monotonic decrease in effective plastic strain at fracture when plotted against stress triaxiality, although
most of this data was acquired under axisymmetric stress states (Hancock and Mackenzie, 1976; Le Roy et al., 1981;
Johnson-Cook, 1985). Mean stress has little or no influence on overall plastic deformation in the absence of damage,
but it has a dramatic effect on the ductile fracture mechanism, particularly on void growth and coalescence. Although
the Gurson Model (Gurson, 1977) of dilatational plasticity is phenomenological, its dependence on mean stress is
formulated consistent with the mechanics of void growth under axisymmetric stress states (McClintock, 1968; Rice
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Fig. 1. Effective strain at fracture for Al 2024-T351. Data from Bao and Wierzbicki (2004) with figure adapted from Teng and Wierzbicki (2006).

and Tracey, 1969). The success of the model in a wide array of applications involving failure phenomena such as
shear localization, crack initiation and crack growth (e.g. Rousselier, 1987; Howard et al., 1994; Xia et al., 1995;
Gullerud et al., 2000) attests to the fidelity of its mechanistic underpinnings. The article by Tvergaard (1990) provides
a complete presentation of the model and some of its applications, along with proposals made subsequent to the
original Gurson Model to improve its accuracy.

One important limitation of the Gurson Model which has become apparent in recent years is its inapplicability to
localization and fracture for low triaxiality, shear-dominated deformations such as plugging failure due to projectile
penetration, cropping and dynamic shear-off. The Gurson Model identifies a single damage parameter, f , as the
average, or effective, void volume fraction. According to the model, an increase in f due to the incremental grow of
voids requires a positive mean stress. Thus, for example, in shearing deformations under zero mean stress, the model
predicts no increase in damage if continuous void nucleation is not invoked. As a consequence, no damage induced
softening takes place under shear in materials with inherent strain hardening capacity, and neither localization nor
material failure occurs.

The derivation of yield function of the Gurson Model (Gurson, 1977) employed spherical voids and based the void
growth mechanics on axisymmetric stress states, following the approach of Rice and Tracey (1969). It has long been
appreciated that the effect of penny-shaped crack-like voids aligned perpendicular to the principal stress direction can
be captured approximately by the model by regarding the voids as nominally spherical with a volume fraction, f ,
tied not to the actual volume fraction of the cracks but to the radius and spacing of the cracks. The Gurson Model
has been extended to include void shape dependences by a number of authors including Gologanu et al. (1995) and
Pardoen and Hutchinson (2000) who made use of basic mechanics solutions of Leblond et al. (1995). However, these
extensions are also mainly based on solutions for voids subject to axisymmetric stressing and they do not address the
issue of damage induced softening in shear-dominated deformations.

Experimental evidence for the susceptibility to shear fracture under low or even negative triaxiality has been pre-
sented by numerous authors. McClintock (1971) documented important cases where ductility is terminated by shear
localization and shear cracking, and he provided theoretical insights using the slip line field theory of perfect plasticity.
While Johnson and Cook (1985) are usually cited for emphasizing the trend of decreasing ductility with increasing
triaxiality, they also report a fracture strain for 4340 steel at zero mean stress (obtained from a torsion test) that is well
below fracture strains for this material at significantly higher mean stresses obtained under axisymmetric conditions
from notched tension specimens. More recently, Bao and Wierzbicki (2004) have presented data that emphasizes that
the relation between the effective plastic strain at fracture and mean stress is not generally monotonic, as illustrated
by their plot for Al 2024-T351 shown here in Fig. 1. The two branches of the curve through the data correspond to
distinct classes of stress states for which triaxiality alone is obviously not an adequate discriminate. For triaxialities
above 0.4 the fracture data in Fig. 1 was obtained using circumferentially notched, axisymmetric tensile specimens
such that fracture is initiated under stress states that are nominally axisymmetric. At triaxialities that are zero and
below, upsetting specimens were used with shear cracks initiating at the specimen surface where a biaxial stress state



K. Nahshon, J.W. Hutchinson / European Journal of Mechanics A/Solids 27 (2008) 1–17 3
exists with one component tensile and the other compressive. When the mean stress is zero, the stress state is pure
shear and a shear crack is observed to form aligned with the plane of maximum shear stress. Two data points at
intermediate low triaxialities were obtained using tension-shear specimens.

Most recently, Barsoum and Faleskog (2007a) tested circumferentially notched tubes of both mid-strength and
high strength Weldox steels in combined tension and torsion with the specific purpose of delineating the roles of
stress triaxiality and a second stress measure, the Lode parameter, capable of discriminating between axisymmetric
and plane strain stress states. They also reported susceptibility to fracture under low triaxiality shearing.

Theoretical studies have been conducted in parallel by Barsoum and Faleskog (2007b) and Gao and Kim (2006)
employing cell model computations for three dimensional arrays of initially spherical voids subject to a wide range of
overall stress states. These authors have shown that the triaxiality measure by itself is insufficient to characterize void
growth rates and other aspects of void behavior relevant to softening and localization.

Knowledge of the underlying mechanisms of softening, localization and fracture in shear is more qualitative than
quantitative, but relevant experimental and theoretical work exists in the literature. Continuous nucleation of voids
by itself can counteract inherent material strain hardening capacity to result in softening. The emphasis here is on
mechanisms such as void distortion and inter-void interaction in shear that give rise to softening and localization.
McClintock (1971) and Teirlinck et al. (1988) discuss specific examples of shear fracture and identify void-sheet
formation as the underlying mechanism wherein it is supposed that under shearing voids increase their effective
collective cross-sectional area parallel to the localization band without an accompanying increasing in void volume.
Localization in shear in micro bands linking voids is evident in the model voided materials tested by Weck et al.
(2006). Simulation of softening and localization in shear is not straightforward. The cell model studies of Barsoum
and Faleskog (2007b) for overall shear deformation with zero mean stress display shear-weakening, but not softening.
Instead, the authors employ attainment of a critical strain in the ligaments between voids as their criterion for shear
failure. Anderson et al. (1990) analyzed the shear fracture localization mechanism at zero mean stress by considering
the detailed interaction between flat voids modeled as micro-cracks in a void-sheet. They found that softening and,
therefore, localization are expected solely due to deformation and rotation of the voids.

2. Stress measures for dilatational plasticity

In this section an additional stress measure that distinguishes between axisymmetric and shear stress states is
introduced to extend the Gurson Model. Isotropy of the model will be retained. The Gurson Model employs the
mean stress, σm = σkk/3, and the effective stress, σe ≡ √

3J2 = √
3sij sij /2, where sij = σij − 1/3σkkδij is the stress

deviator. A third invariant of stress is

J3 = det(s) = 1

3
sij siksjk = (σI − σm)(σII − σm)(σIII − σm) (1)

where the expression on the right is in terms of the principal stresses, which in the sequel are assumed to be ordered
as σI � σII � σIII. Any axisymmetric stress state satisfies

σI � σII = σIII or σI = σII � σIII, (2)

and it is readily shown that J3 = ±2(σI − σIII)
3/27 = ±2σ 3

e /27. Any state which is the sum of a pure shear stress
plus a hydrostatic contribution,

σI = τ + σm, σII = σm, σIII = −τ + σm(τ > 0), (3)

has J3 = 0 by (1). The measure

ω(σ ) = 1 −
(

27J3

2σ 3
e

)2

(4)

lies in the range, 0 � ω � 1, with ω = 0 for all axisymmetric stress states and ω = 1 for all states comprised of a pure
shear stress plus a hydrostatic contribution, as illustrated by the plot of ω as function of σII/σI for σIII = 0 given in
Fig. 2.

The Lode parameter

L = 2σII − σI − σIII = 3(σII − σm)
(5)
σI − σIII σI − σIII
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Fig. 2. ω vs σII/σI for plane stress (σIII = 0).

Fig. 3. Lines of constant ω and L in principal-stress space.

has also been used as a third measure of the stress state in isotropic plasticity, and more recently it has been employed
by Xue (2007a, 2007b) in studying Bao and Wierzbicki’s (2004) data and by Barsoum and Faleskog (2007a) in pre-
senting their own data. Note that L vanishes if σII = σm, corresponding to states of pure shear stress plus a hydrostatic
component in (3). Fig. 2 includes the variation of L under plane stress conditions.

The map of stress states in Fig. 3 is useful in understanding the role of the two measures. Attention is limited to
states with at least one tensile principal stress component such that σI > 0. The full range of states lies within the
angular region ABD in Fig. 3. All axisymmetric stress states (2) lie on either AB or AD. The line AC constitutes all
stress states comprised of a pure shear stress plus a hydrostatic contribution. As noted in Fig. 3, ω varies from 0 on AB
peaking at 1 on AC and falling back to 0 on AD, while L increases monotonically from −1 to 1 across the same lines.
As the existing versions of the Gurson model have been formulated and calibrated based on the mechanics of void
growth under axisymmetric stress states, the modification introduced in this paper will not alter the model for these
states. Instead, the model will be modified for states centered on a pure shear stress plus a hydrostatic contribution as
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in (3). Specifically, we will include a contribution to void damage growth depending on ω that does not vanish when
σm = 0.

3. Modified Gurson Model

The yield surface of the Gurson Model, including the fitting parameters, q1, q2 and q3, proposed by Tvergaard
(1981, 1982), is given in terms of the effective and mean stress measures by

F(σe, σm,f ) =
(

σe

σM

)2

+ 2q1f cosh

(
3q2

2

σm

σM

)
− (1 + q3f

2). (6)

The current state is characterized by f , the void volume fraction, and σM , the effective stress governing flow of the
undamaged matrix material containing the voids. Throughout this paper, all quantities not labeled with the subscript M

represent overall quantities associated with the bulk material. The yield function (6) is retained in the modified model.
Normality implies that the plastic strain rate, DP

ij , is given by

DP
ij = 1

h
PijPkl σ̇kl (7)

where

Pij = ∂F

∂σij

= 3sij

σ 2
M

+ f q1q2

σM

sinh

(
3q2σm

2σM

)
δij . (8)

Subsequently, σ̇ij will be identified with the Jaumann rate of stress. The hardening modulus, h, will be identified
below. If σm = 0, Pkk = 0 and the rate of plastic volume change vanishes, i.e. DP

kk = 0; this feature persists in the
modified version. In the absence of nucleation, existing versions of Gurson Model assume

ḟ = (1 − f )DP
kk. (9)

Because the void volume fraction is the damage parameter in the Gurson Model, the model implies no damage evolu-
tion in deformations involving zero mean stress, as emphasized in the introduction. This appears to be realistic when
the stress states are axisymmetric, as established by computational models of void growth, but it is not realistic for
states of pure shear stress, as discussed in the Introduction.

Motivated by the issues outlined in the Introduction, we modify (9) to include a contribution to the damage growth
rate, ḟ , for states of pure shear stress in a manner which leaves the relation unaltered for axisymmetric stress states.
The modification rests on the notion discussed in the Introduction that the volume of voids undergoing shear may
not increase, but void deformation and reorientation contribute to softening and constitute an effective increase in
damage. Thus, in the modification, f is no longer directly tied to the plastic volume change. Instead, it must be
regarded either as an effective void volume fraction or simply as the damage parameter, as is often the case when
the Gurson Model has been applied to materials with voids with distinctly non-spherical shapes. The modification,
while phenomenological, is nevertheless formulated to be consistent with the mechanism of void softening in shear.
Specifically, it is proposed that (9) be augmented according to

ḟ = (1 − f )D
p
kk + kωf ω(σ )

sijD
p
ij

σe

(10)

where ω(σ ) is defined in (4). The additional contribution to ḟ scales with kωf ωDP , such that in a state of pure shear
stress, ḟ ∼ kωf γ̇ P , where γ̇ P is the plastic shear strain increment. The numerical constant, kω, sets the magnitude
of the damage growth rate in pure shear states, as will be detailed in the next section; it is the single new parameter
that enters the modified model. The additional contribution to ḟ is linear in f under the assumption that the effective
void volume fraction is small. In principle, any monotonic dependence on ω that vanishes at ω = 0 and is maximum
at ω = 1, could be employed in (9), but the simplest linear dependence has been used in the absence of further
mechanistic calibration. It can also be noted that sijD

P in (10) could be replaced by σijD
P with minor effect.
ij ij
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The remaining equations governing increments in the modified model are now listed. Void nucleation is
not included but it can readily be incorporated (e.g. Needleman and Rice, 1978; Chu and Needleman, 1980;
Tvergaard, 1990). The consistency condition for continued plastic loading,

Ḟ = ∂F

∂σij

σ̇ij + ∂F

∂σM

σ̇M + ∂F

∂f
ḟ = 0, (11)

provides the expression for the hardening modulus,

h = −
[(

(1 − f )Pkk + kω

f ω

σe

Pij sij

)
∂F

∂f
+ hM

(1 − f )σM

∂F

∂σM

Pijσij

]
. (12)

Here,

∂F

∂σM

= −2σ 2
e

σ 3
M

+ 3q1q2f σm

σ 2
M

sinh

(
3q2σm

2σM

)
, (13)

∂F

∂f
= 2q1 cosh

(
3q2σm

2σM

)
− 2q3f (14)

and hM is the modulus of the matrix material defined in terms of the logarithmic plastic strain and true stress in
uniaxial tension as

1

hM

= dεP
M

dσM

. (15)

The matrix material (i.e. the undamaged material with f = 0) is defined by its Young’s modulus, E, Poisson’s ratio, ν,
and relation between logarithmic plastic strain and true stress in uniaxial tension, εP

M(σM), also considered as the
relation between effective plastic strain and effective stress. These are inputs to the modified Gurson Model along
with the new parameter kω and initial value of f . The limit of the modified Gurson Model when f → 0 is classical
isotropic plasticity theory based on the Mises yield surface. As in the original model, plastic work in the matrix is
equated to macroscopic plastic work according to

(1 − f )σMε̇P
M = σijD

P
ij , (16)

such that increments in matrix flow stress can be computed from

σ̇M = hMσijD
P
ij

(1 − f )σM

. (17)

The final step is to identify the stress-rate for finite strain applications and to combine the elastic and plastic strain
increments. The stress increments, σ̇ij , in the above development are identified with objective Jaumann increments,
σ̂ij , whose Cartesian components coincide with true stress increments for straining in axes parallel to principal stress
axes. Void damage diminishes the overall elastic moduli of the material. However, this is a small effect compared
to void influence on plastic behavior and the effect on elasticity is neglected, as usually done in this type of model.
Isotropic elastic behavior is assumed. Combining elastic strain rates, De

ij , and plastic strain rates from (7) gives the
total strain rate as

Dij = Mijkl σ̂kl (18)

with instantaneous compliances

Mijkl = 1 + ν

2E
(δikδjl + δilδjk) − ν

E
δij δkl + 1

h
PijPkl.

The inverse is

σ̂ij = LijklDkl (19)

with instantaneous moduli

Lijkl = Le
ijkl − Le

ijmnPmnPrsL
e
rskl

e
h + PrsLrsmnPmn
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where the elastic moduli are

Le
ijkl = E

1 + ν

[
1

2
(δikδjl + δilδjk) + ν

1 − 2ν
δij δkl

]
.

Plastic loading has been assumed in writing both (18) and (19); if the increment is elastic, only the elastic moduli and
compliances are used. The effective plastic strain-rate is defined in terms of the logarithmic strain rates in the usual
way as

ε̇P
e =

√
2DP

ij D
P
ij /3. (20)

4. Stress–strain behavior and calibration in shear

The influence of the modified version of the constitutive law is revealed by the stress–strain behavior in shear.
Specifically, for a power law matrix material with σM = σR(εP

M)N and elasticity neglected (E → ∞), stress–strain
curves will be derived analytically for both pure shear and simple shear (Fig. 4) within a rigorous finite strain frame-
work. Formulas for f and the strain associated with the maximum of shear stress will also be obtained. The maximum
coincides with the onset of localization when there is a uniform distribution of void damage. The formulas are useful
for calibrating the parameters of the model.

4.1. Pure shear

Consider pure shear in Fig. 4 with elastic strains neglected (E → ∞). With σI = σ1 = τ and σIII = σ3 = −τ(τ > 0)

as the only non-zero (true) stresses, sij = σij , σe = √
3τ and, from the yield condition, (6),

√
3τ = σMW(f ) with W(f ) ≡

√
1 − 2q1f + q3f 2. (21)

By (7), DP
33 = −DP

11 are the only non-zero strain rates with DP
kk = 0, and, by (20), ε̇P

e = 2DP
11/

√
3. Then, since DP

11
is the logarithmic strain rate, ε̇P

1 , it follows that εP
e = 2εP

1 /
√

3 where εP
1 is the logarithmic plastic strain component

in the 1-direction. By (10), ḟ = kωf ε̇P
e . With f0 as the initial void volume fraction, it follows that

f/f0 = ekωεP
e . (22)

For the power law matrix it follows from (17) that σ̇M = √
3τN(σM/σR)−1/N ε̇P

e /(1 − f ), which, in turn, can be
integrated using (21) and ḟ = kωf ε̇P

e to give

(
σM

σR

)1/N

=
f∫

f0

W(ζ)

kωζ(1 − ζ )
dζ and

√
3τ

σR

= W(f )

[ f∫
f0

W(ζ)

kωζ(1 − ζ )
dζ

]N

. (23)

Eqs. (22) and (23) provide an explicit recipe for generating τ as a function of εP
e . A set of illustrative curves is given

in Fig. 5.

Fig. 4. Simple and pure shear.
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Fig. 5. Shear stress τ and void volume fraction f as a function of effective plastic strain ε
p
e for pure or simple shear for various values of initial

void volume fraction f0.

Fig. 6. Critical void volume fraction and effective plastic strain at shear band localization as a function of initial void volume fraction f0 in pure
and simple shear.

A further step yields equations for fC and (εP
e )C associated with the maximum of τ at dτ/dεP

e = 0:

NW(fC)3

fC(1 − fC)
= (q1 − q3fC)

fC∫
f0

W(ζ)

ζ(1 − ζ )
dζ and (εP

e )C = 1

kω

ln

(
fC

f0

)
. (24)

Observe that fC does not depend on kω, while the associated plastic strain is inversely proportional to kω. An accurate
approximation to (241) can be obtained by anticipating that both f0 and fC are small and neglecting them compared
to unity:

fC

f0
ln

(
fC

f0

)
∼= N

q1f0
. (25)

Plots of fC from both (24) and (25) with kω(εP
e )C = ln(fC/f0) are displayed in Fig. 6. The accuracy of the simple

approximation (25) is evident revealing that N and q1 appear as the ratio N/q1. The other fitting parameter, q3, has
only a minor influence on these results, as suggested by (25).
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4.2. Simple shear

The above results apply exactly to simple shear (Fig. 4) when elasticity is neglected. The detailed analysis, which
requires use of the co-rotational stress rates and other relations introduced in the next section, is omitted and only
the main result is reported. When elasticity is neglected, the only non-zero stress component is σ13 = τ in the fixed
Cartesian axes and the only non-zero strain-rate component is DP

13 = θ̇/(2 cos2 θ). The effective strain rate (19) is
ε̇P
e = θ̇/(

√
3 cos2 θ) for θ̇ > 0 and, consequently,

εP
e = 1√

3
tan θ for θ > 0. (26)

With εP
e defined above, (22) for f still applies as do (23), (24) and the approximation (25). Thus, Figs. 5 and 6 apply

to simple shear as well as pure shear.

4.3. Calibration of kω from shear data

In pure or simple shear of a block of material with a uniform distribution of f0, shear localization starts when the
effective plastic strain reaches (εP

e )C . Beyond this point, strain localizes in a shear band with unloading outside the
band. Thus, (εP

e )C is an estimate of the overall effective plastic strain at fracture. Assume the initial void volume
fraction, f0, has already been identified using data from another test (e.g. an axisymmetric test or a mode I fracture
test), and q1, q2 and q3 have been chosen. In addition, assume the overall effective plastic strain associated with shear
localization (or fracture) in pure or simple shear is known from an experiment and identify it as (εP

e )C . Then, for
a power law matrix material, the plot of kω(εP

e )C in Fig. 6 or, alternatively Eqs. (24) can be used to determine kω.
It is worth noting that the fitting parameter, q1, which has been proposed based on solutions for voids subject to
axisymmetric stress states (Tvergaard 1981, 1982), influences kω in this calibration process. Consequently, q1 should
not be altered once kω has been determined.

If the stress–strain curve, σM(εP
M), characterizing the matrix material is not a power law, the calibration process is

similar but elementary numerical work is needed to identify the maximum of the relation between τ and εP
e in shear.

Eqs. (21) and (22) are still applicable, but (15) and (17) have to be used to obtain σM in terms of εP
e . Iteration on kω

is required such that (εP
e )C coincides with the experimental value of the overall effective plastic at shear fracture.

5. Localization analysis

A study is performed to demonstrate the sensitivity of localization of plastic flow to the newly introduced consti-
tutive parameter kω. An important objective is exploration of the relationship of the fracture strain, identified with the
overall strain at localization, to stress triaxiality and the third invariant of stress as measured by ω or L. The problem
analyzed is an infinite block of uniform material with initial damage, f o

0 , containing a thin, uniform planar band of
material with larger initial damage, f b

0 . The material outside the band is subject to overall straining parallel to prin-
cipal stress axes. The overall strain corresponding to localization of deformation within the band is determined, and
the critical strain is computed as the minimum localization strain over all possible band orientations. The approach
is a rigorous finite strain analysis that follows earlier localization studies first employed by Marciniak and Kuczynski
(1967) to study localization in thin sheets under plane stress and laid out within a three-dimensional, finite strain
setting by Rice (1977). This approach has been employed by several authors including Saje et al. (1982), Pan et al.
(1983), and Mear and Hutchinson (1985). The following development closely follows Rice’s (1977) treatment as de-
tailed by Mear and Hutchinson (1985). The formulation requires consideration of only two states, those inside and
outside the band, as the material in each region is initially uniform but with differing initial damage states.

Let the Cartesian axes (x1, x2, x3) be the principal stress axes for the deformation history outside the band with
σI ≡ σ1 � σII ≡ σ2 � σIII ≡ σ3, conforming with the conventions introduced earlier (see sketch in Fig. 7(a)). Outside
the band, no rotation occurs and true stress increments are prescribed to satisfy

σ̇2 = Rσ̇1 and σ̇3 = Qσ̇1 (27)

where Q � R � 1. Except for plane strain deformations, R and Q are constant during each deformation history with σ1
increased monotonically until the onset of localization. For plane strain deformations, which are not specifically
considered here, Q is held constant and the condition D22 = 0 provides the evolution of R in terms of Q.
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(a)

(b)

Fig. 7. Effective plastic strain (ε
p
e )C at localization under pure shear loading as a function of initial band angle, ψ0, and angle at localization,

ψf , for initial void fraction f0 = 0.001 (a) and f0 = 0.01 (b). Material parameters are E = 200 GPa, ν = 0.3, σY = 200 MPa, N = 0.1 and
q1 = q2 = q3 = 1.

Given the ordering of the applied principal stresses, the unit vector, n, normal to the critical localization band can
always taken to be perpendicular to the x2 axis. Moreover, the direction of the tangential velocity discontinuity across
the band, t, will then also be perpendicular to the x2 axis. In axisymmetric stressing, the critical band can be either
normal or inclined to the x1 axis. When inclined, the critical band orientation is not unique since all bands with that
same inclination to the axis of symmetry are equally critical. Nevertheless, the unit normal may be taken to be normal
to the x2 axis in the analysis of the critical localization strain. Let ψ0 be the angle between n and the x1 axis in the
undeformed state, and let ψ be that angle in the current state. These angles are related by

tanψ = eε1−ε3 tanψ0 (28)

where ε1 and ε3 are the logarithmic strains outside the band. In the current state,

n = (cosψ,0,− sinψ) and t = (sinψ,0, cosψ). (29)

The velocity gradients, vi,j , strain rates, Dij , true stresses, σij , and various stress rates are piecewise constant inside
and outside the band. Denote quantities outside the band with a superscript o and quantities inside the band by the
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superscript b. Continuity of velocities across the two interfaces between the planar band and the outside regions
requires

vb
i,j − vo

i,j = ḋ1tinj + ḋ2ninj . (30)

With H as the current thickness of the band, ḋ1H is the tangential velocity jump across the band and ḋ2H is the
normal separation rate of the two band interfaces. Shear localizations have |ḋ1| � |ḋ2|, while normal localizations
have |ḋ2| � |ḋ1|, as in the case of a band orientated normal to the symmetry axis in axisymmetric stressing (ḋ1 = 0).

Let Nij be the Cartesian components of the unsymmetrical nominal stress tensor (1st Piola–Kirchoff stress). Con-
tinuity of normal and tangential traction rates across the band requires(

Ṅb
ij − Ṅo

ij

)
ninj = 0, (31)(

Ṅb
ij − Ṅo

ij

)
nitj = 0. (32)

The nominal stress rate is related the to the Cartesian components of the Jaumann rate by

Ṅij = σ̂ij − σjkDki + σikWjk + σijDkk (33)

where Wij = (vi,j − vj,i)/2. By the constitutive relation (19), the nominal stress rate may be expressed in terms of
the velocity gradients as

Ṅij = cijklvl,k (34)

where

cijkl = Lijkl + 1

2
σikδjl − 1

2
σilδkj − 1

2
σjlδik − 1

2
σjkδil + σij δkl .

Inserting (30) into the equations for continuity of traction rates, (31) and (32), one obtains the following linear system
of equations for ḋ1 and ḋ2:

cb
ijkl

[
ninjnktl ninjnknl

ni tj nktl ni tj nknl

]{
ḋ1

ḋ2

}
= (co

ijkl − cb
ijkl)v

o
l,k

{
ninj

ni tj

}
. (35)

An incremental solution is accomplished by prescribing vo
l,k in each step consistent with small prescribed increments

of a quantity such as the maximum principal stress or strain outside the band. In matrix form, (35) is Aḋ = ḃ. Thus,
given the current band orientation, an imposed velocity gradient on the material outside the band, and the current
states inside and outside the band, a solution for ḋ1 and ḋ2 can be found unless det(A) = 0, which corresponds to the
localization condition. Supplementing (35) is the equation for computing the stress increments:

σ̇ij = σ̂ij − σikWkj + σjkWik (36)

with all components being Cartesian with respect to the xi axes.
For stress increments constrained by (27), the non-zero velocity gradients outside the band can be expressed in

terms of vo
1,1 by

vo
2,2 = co

2233c
o
3311 + R(co

3333c
o
1111 − co

1133c
o
3311) + Q(co

1133c
o
2211 − co

2233c
o
1111) − co

3333c
o
2211

co
3333c

o
2222 + R(co

3322c
o
1133 − co

3333c
o
1122) + Q(co

1122c
o
2233 − co

1133c
o
2222) − co

3322c
o
2233

vo
1,1,

vo
3,3 = co

3322c
o
2211 + R(co

1122c
o
3311 − co

3322c
o
1111) + Q(co

2222c
o
1111 − co

1122c
o
2211) − co

2222c
o
3311

co
3322c

o
2233 + R(co

3333c
o
1122 − co

3322c
o
1133) + Q(co

1133c
o
2222 − co

1122c
o
2233) − co

3333c
o
2222

vo
1,1 (37)

such that Do
11 = vo

1,1 can be prescribed prior to localization. For problems with plane strain conditions outside the
band (D22 = νo

2,2 = 0), (37) provides an equation relating R to prescribed Q.

6. Localization predictions

For the numerical results presented below, the relation between the true stress and logarithmic strain for the matrix
material (i.e. the material with f = 0) is taken as

ε =
{

σ/σY , σ � σY ,

(σ/σ )1/N , σ > σ
(38)
εY Y Y
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Fig. 8. Minimum effective plastic strain ((ε
p
e )C)min at localization over all band orientations under pure shear loading as a function of kω for

f0 = 0.001 and f0 = 0.01. Material parameters are E = 200 GPa, ν = 0.3, σY = 200 MPa, N = 0.1 and q1 = q2 = q3 = 1.

where σY = EεY . In all the numerical examples, E = 200 GPa, ν = 0.3, σY = 200 MPa, N = 0.1 and q1 = q2 =
q3 = 1; void nucleation is not included.

6.1. Localization in pure shear—the influence of kω

Consider the plane stress state of pure shear with R = 0 and Q = −1 in (27), i.e. σ3 = −σ1 and σ2 = 0. The
effective plastic strain outside the band at localization, (εP

e )C , is plotted as a function of the initial orientation of
the imperfection band, ψ0, and the orientation at localization, ψf , for f b

0 = 0.001 in Fig. 7(a) and for f b
0 = 0.01 in

Fig. 7(b). Predictions for various values of kω are shown. In these cases, the void volume fraction outside the band, f o
0 ,

is zero. No localization occurs in this case for the unmodified Gurson model with kω = 0.
It is evident in Fig. 7 that the orientation of the imperfection band giving rise to the minimum localization strain is

nearly 45◦ in the state when localization occurs. Accordingly, the initial orientation associated with the minimum is
a strong function of the strain to localization. Plots of the minimum localization strain over all possible orientations,
((εP

e )C)min, are given in Fig. 8 for two levels of initial void volume fraction in the band. As with the calibration curves
in Fig. 6, these results can be used to gauge the value of kω required to produce a specific level of fracture strain in
pure shear.

6.2. Influence of initial void volume fraction outside the band

The effect of voids outside the band is displayed in Fig. 9, again for pure shear with R = 0 and Q = −1. In this plot,
the initial void volume fraction inside the band is fixed at f b

0 = 0.01 while the initial volume fraction outside the band
is varied over the range 0 � f o

0 /f b
0 � 1. The lowest critical strain corresponds to the largest non-uniformity with no

voids outside the band, as in the cases plotted in Figs. 7 and 8. In the limit when the initial void distribution is uniform
(f o

0 /f b
0 = 1), localization occurs as a bifurcation. While there is some sensitivity to the initial non-uniformity, it is of

secondary importance compared to the magnitude of initial void volume fraction in the band, f b
0 . In the examples that

follow, we will continue to take f o
0 = 0.

6.3. The roles of ω(σ ) and σm/σe in localization and fracture

With reference to Fig. 3, note again that axisymmetric stress states outside the band are either uniaxial tension
plus a hydrostatic component (σI > σII = σIII) with ω = 0 and L = −1 or equi-biaxial tension plus a hydrostatic
component (σI = σII > σIII) with ω = 0 and L = 1. States outside the band comprised of a pure shear stress plus a
hydrostatic component (σI = τ + σm, σII = −τ + σm, σIII = σm with τ > 0) have ω = 1 and L = 0.

Curves of the minimum plastic strain at localization versus triaxiality for specified values of ω in Figs. 10–12
bring out the significant role of kω in the modified version of the constitutive model, especially in the range of low
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Fig. 9. Minimum effective plastic strain ((ε
p
e )C)min at localization over all band orientations under pure shear loading as a function of the ratio

of initial void volume fractions outside, f o
0 , and inside,f b

0 , the band for kω = 1 and kω = 3. The initial void volume fraction inside the band is

fixed as f b
0 = 0.01. Localization in the limit f o

0 /f b
0 → 1 occurs as a bifurcation. Material parameters are E = 200 GPa, ν = 0.3, σY = 200 MPa,

N = 0.1 and q1 = q2 = q3 = 1.

Fig. 10. Minimum effective plastic strain ((ε
p
e )C)min at localization over all band orientations for constant values of ω as predicted by the un-

modified Gurson Model (kω = 0). Material parameters are E = 200 GPa, ν = 0.3, σY = 200 MPa, N = 0.1, q1 = q2 = q3 = 1, f b
0 = 0.01 and

f o
0 = 0.

triaxiality. In these figures, ω and L are associated with the overall stress state, i.e. the stress state outside the band.
Of primary relevance to the present investigation, is the fact that the results based on the unmodified Gurson Model
(kω = 0) predict that localization is effectively excluded for any stress state at triaxialities below about 0.3. While
stress states corresponding to a pure shear stress plus hydrostatic tension (ω = 1 and L = 0) are more susceptible to
localization than axisymmetric states at the same triaxiality, the spread over the entire range of ω or L is not nearly
as large as seen in some of the sets of experimental data. For the modified model, the significant role of the second
measure of stress state is seen in Fig. 11 for kω = 1 and Fig. 12 for kω = 3. For axisymmetric stress states, kω has very
little influence on localization as can be seen by comparing the curves for L = ±1 in Figs. 11 and 12 those in Fig. 10
for the unmodified Gurson Model. While the effect of kω is strictly absence on behavior outside the band for these
states, it has a small effect on behavior inside the band and, thus on the localization strain, because the orientation
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Fig. 11. Minimum effective plastic strain ((ε
p
e )C)min at localization over all band orientations for constant values of ω as predicted by the modified

Gurson Model for kω = 1. Material parameters are E = 200 GPa, ν = 0.3, σY = 200 MPa, N = 0.1, q1 = q2 = q3 = 1, f b
0 = 0.01 and f o

0 = 0.

Fig. 12. Minimum effective plastic strain ((ε
p
e )C)min at localization over all band orientations for constant values of ω as predicted by the modified

Gurson Model for kω = 3. Material parameters are E = 200 GPa, ν = 0.3, σY = 200 MPa, N = 0.1, q1 = q2 = q3 = 1, f b
0 = 0.01 and f o

0 = 0.

of the band associated with the minimum localization strain is not precisely normal to the maximum principal stress
direction. Thus, material within the band develops a small component of shear.

The modification introduced in this paper highlights the difference between shear and axisymmetric states, leaving
behavior for axisymmetric stressing unaltered. By choosing ω(σ ) as the second measure of the stress state, we have
ignored any role of the sign of L on the constitutive behavior and, specifically, our modification makes no attempt
to distinguish between the two types of axisymmetric stress states with L = −1 and L = 1. This decision was based
our desire to introduce a modification having as few additional parameters as possible, coupled to the fact that we are
unaware of experimental data for fracture or localization strains that would allow us to discriminate between states
with L = −1 and L = 1. If subsequent experimental data for states with L = 1 suggest that there is an important
difference in localization and fracture strains from those with L = −1, the present modification can be extended to
capture the effect. A modification of the Gurson Model employing the Lode parameter has been pursued by Xue
(2007a, 2007b). Further numerical simulations of void growth and coalescence along the lines conducted by Barsoum
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Fig. 13. Minimum effective plastic strain ((ε
p
e )C)min at localization over all band orientations as a function of stress triaxiality outside the band

under axisymmetric (σo
m/σo

e � 1/3) and plane stress conditions (σo
m/σo

e � 1/3) for kω = 1 and kω = 3. Additionally, the parameter ω associated
with the state outside the band is shown. Material parameters are E = 200 GPa, ν = 0.3, σY = 200 MPa, N = 0.1, q1 = q2 = q3 = 1, f b

0 = 0.01
and f o

0 = 0.

and Faleskog (2007b) and Gao and Kim (2006) can be used to gain important insights into dependence on the Lode
parameter.

The role of ω, and, thus, of L, on the localization strains in Figs. 11 and 12 is dramatic, but not out of line with
the limited experimental data taken for both axisymmetric and non-axisymmetric states in the literature (e.g. Bao and
Wierzbicki, 2004; Barsoum and Faleskog, 2007a; Johnson and Cook, 1985). The present modification of the Gurson
Model introduces one new material parameter, kω, which is most readily assigned by calibration against data for
localization or fracture in shear, as discussed in some detail in Section 4. Based on the limited data in the literature, it
would appear that kω should lie in the range 1 < kω < 3 for many structural alloys.

6.4. An illustration of the importance of the stress state measures ω(σ ) and σm/σe

Most of the fracture strain data in Fig. 1 from Bao and Wierzbicki (2004) for Al 2024-T351 aluminum was obtained
using two distinct types of specimens. Fracture strains from tensile tests of notched round bar specimens are associated
with axisymmetric stress states (R = Q < 1 with ω = 0 and L = −1). The low triaxiality data is obtained from
upsetting tests obtained by compressing stubby cylindrical specimens that are constrained at their ends. For these
specimens, localization and shear cracking occur at the surface under states of plane stress (R = 0,Q � 0, with
ω � 0). Fig. 13 plots minimum effective plastic at localization as a function of triaxiality, σm/σe, for the two types
of stress states for kω = 1 and 3 with f b

0 = 0.01 and f o
0 = 0. Included in this figure is a plot of ω associated with the

stress state outside the band. Under axisymmetric stressing for σm/σe < 1/3, localization occurs at very large strains,
and the curve in Fig. 13 has been terminated at σm/σe = 1/3 corresponding to uniaxial tension. Note, again, that kω

has very little effect on localization under applied axisymmetric stress states. As seen in Fig. 13, the modified Gurson
Model predicts a very strong dependence of the localization strain on whether the applied stress state is plane stress
or axisymmetric, in accord with the trends in the Bao and Wierzbicki (2004) data in Fig. 1. No attempt has been made
to fit the data in Fig. 1. However, it is clear from Fig. 13 that f b

0 and kω can be chosen such that the predictions
will quantitatively capture data trends. The state of pure shear in plane stress has σm/σe = 0. Localization is even
predicted under slightly negative triaxiality for plane stress states. The cusp-like behavior seen in the original Bao and
Wierzbicki (2004) data plot is associated with intersection of the plane stress branch of the data with the axisymmetric
branch at the state of uniaxial tension at σm/σe = 1/3, as seen in Fig. 13. Similar trends emerge from a damage model
introduced by Xue (2007a, 2007b) which ties damage development to both triaxiality and the Lode parameter.
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7. Concluding remarks

The modification of the Gurson Model introduced here incorporates a contribution to ductile damage growth un-
der shear-dominated stress states in a way that leaves behavior under axisymmetric stress states unaltered. One new
parameter, kω, is introduced which sets the rate of damage development in shear. The modified model is capable of
modeling localization and fracture in shear-dominated stress states with low triaxiality. The model captures experi-
mental trends recently reported for various structural alloys displaying a marked difference between fracture strains
under axisymmetric stressing from those under a pure shear stress plus a hydrostatic component or under plane stress
states.

Calibration of the new parameter for a specific material is proposed based on experimental data on shear lo-
calization or fracture. The modified model has been implemented as a user-material constitutive subroutine in
ABAQUS/Explicit (Nahshon and Xue, 2007). This code is currently being used to study several basic problems in
which the issues addressed in this paper are crucial, including a shear-off experiment designed to measure fracture be-
havior in shear and the transition from ductile necking failure to shear-off failure in clamped plates subject to intense
blast loads.
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