Constitutive Modeling of Discontinuous
Carbon Fiber Polymer Composites

Hang-Ki Lee, Pakal Rahul-Kumar,
J. Michadl Starbuck*, George C. Jacob*
John D. Allen and Srdan Simunovic

Computational Materials Science Group
"Composite Materias Technology
Oak Ridge National Laboratory
" University of Tennessee

WWA- cirs. or nl . gov

oml

Bringing Scienceto Life

© CMS Group 2000



Overview

 Material modeling
— Micro-mechanics-based damage model
— Fracture mechanics-based damage model
— Delamination Model
— Preform Modeling

e Progressive Crush Experiments
e Future Work
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g Objectives:

The objective of this project is to develop analytical and numencal tools that
efficiently predict the behawior of carbon-fiber based composites m velicular
crash worthiness simulations. This project focuses spectfically on melded
polymeric matriz composites, and considers loading conditions and strain
rates that arise n vehicular impacts.

“While the shott and intermediate goals are to provide approaches and
numenical methods to simulate automeotive components dunng impact events
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S R A
Modeling of Discontinuous Fiber Composites

t Objective

Develop analytical and numerical tools for predicting mechanical response of
discontinuous carbon fiber composites subjected to impact loading.

t Accomplishments

- Developed constitutive models based on micro-mechanical formulation and
combination of micro- and macro-mechanical damage criteria.

- Incorporated developed models with probabilistic micro-mechanics for
evolutionary damage in composite materials.

- Investigated effect of weakened interface (partial debonding) by employing an
equivalent, transversely isotropic inclusion.

- Extended developed model to include crack effects on mechanical response of
composite materials.
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S R A
Modeling of Discontinuous Fiber Composites

t Accomplishments (Continued)

- Developed micromechanics-based inter-fiber interaction formulation for
modeling of composites with high fiber volume fraction.

- Implemented models into finite element code DYNA3D to perform impact
simulation of composite materials.

- Performed numerical simulations for Biaxial Test of Cruciform Shaped
Composite Specimen and Four-point Bend Test in order to evaluate ability of
developed composite model to predict experimentally obtained response.

- Performed parametric studies to evaluate constitutive model sensitivity to
Weibull parameter S,.
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B
Outline

t Micromechanics-based Constitutive material model

t Progressive damage model

t Crack and inter-fiber interaction effects

t Finite element implementation for impact simulation

t lterative algorithm for progressive damage model

t Biaxial impact simulation of cruciform shaped composite specimen
t Four-point bend simulation

t  Summary and future directions
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Micromechanics and Equivalence Principle

SO or € SO or €
t44 t44

Fibe
Micromechanics
Based modeling

>

Matrix

vy vy

Heterogeneous composites Equivalent homogeneous
media with appropriately
defined properties
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Composites with Aligned Discontinuous Fibers

t Effective elastic moduli of multi-phase composites containing
randomly located, aligned elastic ellipsoids (see publication #2)

C.=Co-{I+B-0I—-S-B)"'}

t Total stress at any point X in the matrix

oxX)=0°+o'(x)

in which o° and o’ are defined as

oc’°=Cy:€°

o' (x) = Cy: / Gx—x):ex)dx' +Cy : / Gx —x') : e3(X') dX’
1% 1%
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Composites with Aligned Discontinuous Fibers

t Ensemble-averaged stress norm for any matrix point X

(H) (%) ZHO + / (H&IK) — HO) PO dx?)

|x—x(11)|>a

+ / . {Hx|x") — H°} P(xV) dx(O + ...
|x—x21 |>a '

t+ Effective yield function for fiber-reinforced composites
F=(1-¢):T:6 - KX&)

where the isotropic hardening function K (€?) is defined as

2 -
K(e?) = \/; {ay + h(é”)q}
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Randomly Oriented, Discontinuous Fibers

t+ Orientational averaging process (see publication #1)
2r  p7/2
C - DE/ / ()P0, d)sinbdOdo
0 0

t+ Governing equations for randomly oriented fiber-
reinforced composites

2
C&D=CO:[CED——§ ¢, C €, D]
r=1

C € D=0 : €°
C €. DO=—12,:€°
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Progressive Damage Model
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N b
ey

Crack (phase 1) ‘
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Rerfectly bonded Fartially debonded

fiber (phase 2) fiber (phase 3)
The inital gate The damaged date

T A schematic of aligned fiber composites subjected to uniaxial tension.
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S R A
Equivalence Principle for Partially Debonded Fibers

See Figure A.
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Progressive Damage Model

_ (&)1 \
Pil(am)1]l=1— exp —( )

+  Weibull probabilistic distribution function for fiber
debonding (damage)

So

® Current debonded (damaged) fiber volume fraction

- (&m)l M
¢ = ¢Pil(m]l =041 —exp |- ( 5 )
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Penny-Shaped Cracks

t  Penny-shaped cracks are regarded as the

X1 . limiting case of oblate spheroidal voids with
A az=a3=a:al aspect ratio a —» 0.
1= . o :
a’l-aa t  Various cracks with different crack size and

orientation can be included into the
constitutive model by adding the
corresponding inclusion phases.

t  Penny-shaped cracks are assumed to
remain at the same crack density during
the deformations.

t  Effective elastic moduli for multi-phase
Spheroidal inclusion composites containing various cracks is
derived as (see publication #3):

If a>1; prolate spheroidal inclusion . g J
a=1; spherical inclusion C=Cxd+af{f (A+S) fI-f SXA+S) T}y
a<l; oblate spheroidal inclusion € u

WWA- cirs. or nl . gov

Bringing Scienceto Life

(D

© CMS Group 2000



Effect of Cracks on Mechanical Behavior of Composite

120

— - — high crack density without debonding

100 low crack density without debonding

************** high crack density with debonding
— — low crack density with debonding

stress (MPa)

0 0.0025 0.005 0.0075 0.01 0.0125 0.015
strain
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B
Inter-Fiber Interaction Formulation

g‘;ﬁ;icﬂtgon” t  Approximate eigenstrain accounting
for pairwise fiber interaction for

4_,. multi-phase composites

<e >=G:e°

t  Effective elastic moduli for multi-
‘ phase composites considering inter-
fiber interaction (The corresponding
paper is in preparation.)

C=Gxl- Aff B(A- S +,5°G)

Local matrix point xﬂcollects stress perturbations due to
surrounding fibers with pairwise inter-fiber interaction.
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Inter-Fiber Interaction Formulation
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t Inter-fiber interactions significantly affect the overall composite moduli when the contrast
ratio is high (or low).
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I ]
Finite Element Implementation for Impact Simulation

+ Model is implemented into finite element code DYNAS3D to
perform impact simulation of composite materials.

+ Model uses strain driven algorithm to link with
displacement based finite element code DYNA3D.

t+ Micromechanical iterative algorithm is used for modeling
progressive damage.
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lterative Algorithm for Progressive Damage Model

See Box 1.
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Return Mapping Algorithm

See Box 2.
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B
Biaxial Test Simulations

t Planar biaxial tests of cruciform shaped composite specimen were performed by
Waas and Quek (1999) to gain insight into constitutive behavior of damage
induced composite materials.

t  Numerical simulations of biaxial tests were carried out to examine whether the
implemented computational model is able to predict the experimentally obtained
response.

t Composite specimen was loaded proportionally with the rate of 30 Ib/sec (130
N/sec) in biaxial compression and tension in the ratio of 1:1.

t  Material properties, volume fraction of fibers, and aspect ratio of fibers were
E.=3.0GPa, n_=0.35, E=72GPa, n=0.17, {=0.5, and a =20.0. Default DYNA3D
shell element formulation based on Belyschko-Tsay theory was utilized for
modeling the composite specimen.
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Biaxial Test Simulations

See Figures 1 and 2.
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Damage Contours During Biaxial Loading

-
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H
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t Figures show a sequence of damage contours during biaxial loading. Damage zone emanates from the
edges of the cutout.

t Figure 2 of previous slide and above figures show damage initiation and evolution along the x- and y-axes
around the cutout, which corresponds to Waas and Quek [1] 's observations.

t Simulations are used for predicting the direction and the rate of damage propagation during the test.

WWA- cirs. or nl . gov

oml

Bringing Scienceto Life
© CMS Group 2000



B
Four-Point Bend Simulation

t  For progressive crush tests of composite tubes, flexural properties and the
corresponding damage mechanisms of components must be characterized.

t  Four-point bend test is commonly used for determining the flexural properties of
high-strength composites.

t To assess the predictive capability of the computational model for simulating
Impact damage of composite structures, numerical four-point bend simulations
were carried out.

t In order to avoid excessive indentation, or failure due to stress concentration
directly under the loading nose, the loading nose in contact with the specimen
must be sufficiently large.

t Rigid loading noses and rigid supports were modeled as the master surface and
the set of nodes on the composite plate as the slave contact node set.

WWA- cirs. or nl . gov

oml

Bringing Scienceto Life
© CMS Group 2000



Four-Point Bend Simulation

C4F Plastic Stran
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Sequence of damage contours and deformed shape during four-point bend impact

T Figures show the maximum damage at surfaces located around loading noses.
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Four-Point Bend Simulation
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Time-history plots for the damage index at the contact surface near
loading nose and at the center between loading nose and support

t+ Simulation will be performed with a geometrical trigger at the center of the specimen.
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S R R R
Parametric Study for Weibull Parameter S,
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s, yield stress of the matrix

Damage index, representing the volume fraction of
perfectly bonded fibers, during four-point loading

t Influence of the value of Weibull parameter S, which is related to the interfacial strength,
on the damage evolution in composite.
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S R A
Summary

t Emanating from a constitutive damage model for aligned fiber-reinforced
composites, a micromechanical damage constitutive model for random fiber-
reinforced composites was developed to perform impact simulation of random
fiber-reinforced composites for automotive applications.

t  Evolutionary interfacial debonding model and a crack-weakened model were
subsequently employed in accordance with the Weibull's probability function to
characterize the varying probability of fiber debonding.

t  Micromechanics-based inter-fiber interaction formulation has been developed to
model composites with high fiber volume fraction.

t Developed constitutive model is able to simulate mechanical behavior of new
composite materials (e.g., P4) containing cracks of different sizes and
orientations by adding the corresponding inclusion phases.
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S R A
Summary

t  Constitutive models were implemented into the nonlinear finite element code
DYNA3D using a user-defined material subroutine to simulate the dynamic
inelastic behavior and the progressive damage of the composite materials.

t Composite impact simulations were carried out to predict the experimentally
obtained response during impact.

t Based on the numerical simulations, we can draw the conclusion that although
more experimental work is needed to determine the damage parameters, the
implementation of a new constitutive model into the finite element code
DYNA3D has resulted in a promising numerical tool for the simulation of
progressive damage in impacted composite structures.

WWA- cirs. or nl . gov

oml

Bringing Scienceto Life
© CMS Group 2000



Future Directions

t Develop laboratory experiments and procedures for
characterizing basic damage mechanisms and monitoring the
damage evolution during impact using nondestructive evaluation

techniques.

t Conduct further assessment and experimental validation of the
developed damage models to simulate composite crushing
problems.
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Fracture M echanics Based Damage
Modeling of RFC Composites

Pakal Rahul-Kumar
Srdan Simunovic
Computational Material Science Group
Oak Ridge National Laboratory

21 March, 2000
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B
Damage M odeling of RFC Composites

 Prone to failure by accumulation of damage and growth
of cracks

 The fallures have origins in microstructural defects such as
— Micro-cracks in matrix material
—Weak materia interfaces
—Voids and secondary crack surfaces

* Mechanical performance isdirectly related to resist failure
by crack initiation and subsequent growth, i.e. the
Fracture Toughness of the material
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R R
Damage M odeling of RFC Composites

* Build upon existing theories that account for the
microstructure of the material

 Allow for the evolution of the microstructure by
employing the governing physical laws

» Model the stress relaxation/softening with evolving
microstructure

 Use traditional fracture mechanics based testing
methods to calibrate the model

WWW- cs. or nl . gov

oml

Bringing Scienceto Life

© CMS Group 2000



Properties of Micro-cracked Solids
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e Severa studiesin literature focused on the

prediction of properties of micro-cracked
solids

e Studies take into account the micro-crack

opening, frictional dliding, crack interaction

» Consider only a stationary system of micro-

cracks. Examples are the
— Self Consistent scheme

., — Differential Scheme
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R R
Existing Theories - Secant M odull

 Differential Scheme Estimates (Hashin 1988)

r =§In1+Eln8é' n.9, 45 |n8é+n69+ S |n8é3' Ne O
8 n, 64 él-ng 128 él+ng 128 é3-ng

: — 3
_ Ea%cj(’/gaes- n g’ Crack density,r = Nc
¢ gn g &3-N, 5 10
—— Sdf Consistent Estimate
. . 081 —— Differential Estimate
e Salf Consistent Estimates

0.6 |

(Budiansky & O’ Connell, 1976) 4

B 04|
e =8 | 16{1- n*)f0- 3n)¢ N
452-n) 4
n=nd- o 16(1- nz)(3- n)9 O.Oolo 012 o‘_4 O‘.6 018 1‘.0 1‘.2 1‘.4 1‘-6
e ? 15(2' n) B Crack density, r
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I
Evolving Microstructure

@ * During material failure, exiting micro-cracks
grow in size, new micro-cracks are formed, and
\\:j& URAY, they subsequently interact and coal esce

N » Energy absorbed is determined by these failure
PRSI mechanisms which affect the post-failure response

A * In computational modeling

Ds — Need to estimate the tangent moduli D,
D for an evolving system of micro-cracks
t

> — Capture stresses rel axation accompanying
accumulation of damage
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R
Rate Constitutive Relations

e Constitutive relation for elastic material with micro-cracks
distributed statistically uniformly

s =D,(c,N):e
 Rate equations for evolving microstructure are obtained as
S :DS:'e+[')s:e:De:'e+.”.|?5('::e+.”DS N:e
C

 Constitutive description is complete by specifying
— Micro-crack growth rate, ¢
— Micro-crack nucleation rate, N
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Micro-Crack Growth & Nucleation Rates

Experimental observations reveal
— Cracks grow at afraction of Raliegh surface wave
speed (Ravi-Chandar & Knauss 1984, Freund 1998)

- [ E _0.862+1.14n
c=als)vg, a<10 v,= ) T

— Crack nucleation is governed as (Seaman et al.,1976)

N = Nexp P— P>F N=0,PEP
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R R
Micro-Crack Stability

* Micro-crack stability is governed by As
energy balance as specified by Griffith =

fracture theory

>

SY
 Cracks growth when crack driving energy G is greater
than the fracture toughness of material, G,

 The stress state, normal and shear
stresses, surrounding a crack tip
governsthe crack driving energy, G

WWA- cirs. or nl . gov

oml

Bringing Scienceto Life
© CMS Group 2000



Stresses on a Micro-Crack

« Normal traction on a micro-crack As

e Shear traction on a micro-crack

o 2
S, =[S;NSyNy - (s..n.n.)

" ik T
. . V »
e Frictiona resistance stress are
_ S
Sr—So'rr(Sijninj) M
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Micro-Crack Stability Criteria

Application of Griffith Criteriafor a penny shaped
micro-crack results in the following crack stability
criteria (Addessio & Johnson 1990)

e Crack growth under tension (s, =s,n,n 2 0)

I

Fn(Sij’ni’C):Sijaniknk ) g(sij”inj)2 - Kjes 0

* Crack growth under compression (s, =s;n,n. <0

-

Ft(sij’ni’c):(st B Sr)z' K/C3 0

K =P nyac
2el-ng C
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e
Damage Surfaces

o Continuum level representation of micro-crack stability
criteriais a damage surface and is obtained through the
following volume average procedure
(Addessio & Johnson 1990)

(\I\I\JJ:(S i 1, ,C)VV(C,\N) dedWdV 3 0

VcW
w(c,W) — Crack distribution function

» The resulting damage surface are defined in terms of the

scalar parameters, p and g, defined as
/2

1 as_ _ 0
Po3S MO ATGSS L S TSR
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Damage Surfaces

(Addessio & Johnson 1990)

* Intension, p < 0, damage surface is obtained as

* In compression, p > 0, damage surface is obtained as

M [PRE D

q_3(3-2mz)é C 5 T
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Damage Surfaces

Li- Li{r
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Graphical plot of the damage surface in the (p,q,c) space
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Damage Surfaces

for various fixed values of micro-crack length, c

2.5

Graphical plots of the damage surface in the (p,q) space

Increasing crack size, c

20

15|

a/d,

10}

|/
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Dissipative Nature of Material

 As cracks grow crack distribution evolves and the
stiffness/compliance variesin time

e=C_:$+C,:s
 Rate equation for aMaxwell solid
—/\/\/ 1] é:§+§

E h E h
» Material behavesasaMaxwell solid _h _C,
with avariable relaxation time, t E C,
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Material Point Constitutive Algorithm

1. Initidize: ¢, =¢C, €., =€, +De,,
2. Compute D(E_n.C,.1,Ng) and Ds = D De, .,

3. Compute Pr+1 and One1 and |:d(pn+1’qn+1’Cn+1)
4. If Damage Surface, F; < 0. YES: EXIT

EL SE: Evolve micro-cracks
5. Compute incremental micro-crack growth

Cn+1 = Cn t Dta(S )‘nVR

n+l
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R R
Material Point Constitutive Algorithm

6. Update the Moduli D, using, c,,.;

7. Update stresses using incremental constitutive

eguation
s ..=s_+D :De +ﬂ e”*1(0 -C)'e
ntl ~ “n eln+1 n ﬂCn+1 n+1 n/- “n+l
8. EXIT
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M aterial Parameters

E,=4.4x 10! Pa Ny = 10" m3

n,=0.16 Co =14 mMm

r = 3177 Kg/m?3

S,=0.0 ro = Ncy® = 2.744 x 104
G; =10.13 N/m

m= 0.26

Representative of SIC material
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: Uniaxial Strain Test
6e+9 _
46+9 —— 25051t Tension I
: —— 25005 "
2et9 | — 100005t
/CU\ -
g-_/ 0 ...............................................................................................
8 ool
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Uniaxial Strain Tension
Load path in the (p,q,c) space

10 Imitial Micro-Crack
T T g@rowth
0.8
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Uniaxial Strain Compression

qfqﬂ

1INl
O

Bringing Scienceto Life
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Softening — Uniaxial Strain Tension

stress softening

Lt A L A A ot A

Effect of superimposed hydrostatic pressure on subsequent

A — Stress path without

superposed hydrostatic

pressure

B — Stress path with

superposed hydrostatic

pressure after peak
In curve A
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Softening —Triaxial Strain Tension

Loero | superposed hydrostatic
1.3e+9 | pressure
g e B — Stress path with
5 758 / superposed hydrostatic
c oers A pressure after peak
; In curve A
2.5e+8 |
00 b e
0.0 0.1 0.2 0.3 0.4 0.5

Effect of superimposed hydrostatic pressure on subsequent
stress softening

A — Stress path without
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Experimental Measurement of G

R-curve like crack growth in RFCC'’s
(Gaggar & Broutman, 1975)

* Device a SEN or a DCB test specimen
program to evaluate the R-Curve
for the composite

» The various energy dissipating damage
mechanisms are expected to result in an

GorG

G,

P

(|

vy

'

/

%

a

|
>
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Calibration of N and c,

 Use the experimentally obtained P
P-u curve to calibrate the modedl

 Numerically smulate the test to
reproduce the P-u curve and obtain

§U

representative values for N and ¢,
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Delamination M odeling Using
Cohesive Elements

Pakal Rahul-Kumar
Sunil Saigal”®
Anand Jagota’

* Carnegie Melon University
T CR&D, The DuPont Co.
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R R
Delamination Failure of Composites

e Failure in RFC composites is observed to occur through
delamination between pliesin the composite

e Delamination involves propagation of crack surfaces
accompanied by energy dissipation
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R
Delamination - Cohesive Elements

 Energy dissipation during delamination occurs within
the cohesive zone located ahead of propagating crack front

* In computational modeling of delamination, cohesive
elements are a powerful tool to model automatic failure
Initiation and subsequent propagation

2. —g-

Cohesive Zone Cohesive Element

oml
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Cohesive Zone Potentials

» Cohesive Zone Potentials, f, are used to represent energy
dissipation occurring during delamination

 Potentials allow for coupling of deformation between
the normal and tangential modes of delamination

WWA- cirs. or nl . gov

oml

Bringing Scienceto Life
© CMS Group 2000



R
Cohesive Zone Tractions

e Tractions across crack faces are obtained as

- ft(0,0,0,)
n ﬂDn
Normal Tractions Tangential Tractions

T, T,

d, D, \/ Vdcr D,

dCI’

« Model parametersare G = ¢y, (D, Dy, D,,) dD,

, EtC

d,, - Critical opening displacement

WWA- cirs. or nl . gov

oml

Bringing Scienceto Life
© CMS Group 2000



Dynamic Crack growth in a DCB

3500

3000 |

Ve\ 2500
v 1 l 2000

1500 |

1000 |

500 F

ok
0000 0005 0010 0015 0020 002 0030 0035 0040

_ _ _ Time ()
» Cohesive element implemented in DY NA3D

* Verifies our implementation of cohesive element |
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Future Efforts

» Develop better approximations to micro-crack growtn
velocity based on analytical solutions for a penny-shaped
crack under dynamic loading conditions

» Consider effects of fibers and surrounding micro-cracks
on energy release rate and corresponding damage surfaces
— Stang 1986 and Pijauder-Cabot & Bazant 1991
— Effects of secondary tensile cracks in compression

 Obtain a plane stress formulation for use with shell
elements

—S43 =0, Dey in not kinematically specified

oml
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Future Efforts

* Investigate into the reduced integrated versus the fully
integrated shell formulations to be used with the model
effectively

— Belytschko-Tsay element
— Hughes-Liu element

» Formalize the experimental program for the calibration
of the model

« Simulate the quasi-static and dynamic RFC composite
crush tube tests
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Modeling of P4 Preform

John D. Allen and Srdan Simunovic

Computational Materials Science Group
Oak Ridge National Laboratory

WWA- cirs. or nl . gov

oml

Bringing Scienceto Life

© CMS Group 2000



B
P4 Microstructure M odd

 Model currently ssimulates fiber deposition, only

o Complete process model should include preform
compression, resin infusion and curing

 Model isused for linking of manufacturing
process to resulting mechanical properties

* P4 fiber deposition ssmulation provides
information for micro-mechanical modd to
account for characteristic distributions of preform
and fiber properties
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Fiber Deposition Process

460 fibers
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I ]
Fiber Deposition M odel

e Process variables used in simulation:
— Spatia and orientation distributions

— Fiber length, cross-section area, filamentization,
flexibility, cross-section deformation

e Programmed deposition results in characteristic
fiber property distributions

e Process variables ultimately determine distribution
of effective material properties
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PASIM Program Control

Mean Fibre Length (in.)
Length §td. Dev.

Fibre Diameter [in.)

Width (in.) [10.000

Layup Dimensions Height (in.) | 10.000
Thick (in.) [0.2500
Spray Pattern Fibre Drientation
() Program... ) Program... |
(i Raster ) Random
(" Random ) Quasi Random

(@ Quasi Random
% Random (0.0000

2.0000
0.0000

0.0500

) Fired
Orientation (Deqg.)

0.0000
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Preform Analysis

o Fiber-fiber and fiber-resin
contact areas indicate
Interaction between
constituents

e Preform sectioning in longitudinal and through-thickness
direction indicate effective lamina properties distributions,
and representative volumes, and delamination paths

WWA- cirs. or nl . gov
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Preform Analysis

Line representation is
used for analysis of
longitudinal fiber
properties

Free volume analysis
IS used for
determination of
characteristic resin
volume distribution

Bringing Scienceto Life
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Preform M easures

* |mplemented measures.
— Fiber-to-fiber contact area distribution
— Fiber-to-resin contact area distribution
— Fiber longitudinal shape distribution
— Fiber cross-section distribution

« For random fiber deposition, fiber features vary in
composite through-thickness direction
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B
Fiber-to-Fiber Contact Area

Fiber-to-Fiber Contact Area

0.405

1
0.39 3
o Fiber flexibility
g oxrs In axial and
S — Cross-section
& Layup Configuration ) )
5 030 -8-8 High Fiber Flexibility directions
< Medium Fiber Flexibility
E ©-6 Low Fiber Flexibility control extent of
g o contact
0.33
0.315
0 1.5 3 4.5 6 75 9 10.5 12 13.5 15

Layup Progression
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Fiber Shape Analysis- Wavelet Spectrum

| Wavelet Spectrum =l

e e L

ITax Wal 127.00
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~lber Shape Analysis- Power Spectrum

| Power Spectrum =l

Max Wal 51.00
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S R A
Fiber Shape Analysis

e Plots are continuously updated during layup

* Fibreslying lowest in the layup bear the lowest
frequency components (and fewer components in
general)

* Fiberslying higher in the layup bear the highest
frequencies since they must adjust to ever more
complicated "substrates’

* Frequencies stabilize after certain thicknessis
reached
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S R A
Relevanceto Material Modeling

 Fiber shape characterization is used for
determination of equivalent fiber shape
distributions in micro-mechanics-based model

* Fiber shape distribution and fiber-to-fiber/resin
contact is used for solution of single fiber problem

o Material properties significantly vary in through-
thickness direction and influence delamination

 Distribution of preform elastic properties can
Indicate representative volume of material
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