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Overview

• Material modeling
– Micro-mechanics-based damage model
– Fracture mechanics-based damage model
– Delamination Model
– Preform Modeling

• Progressive Crush Experiments
• Future Work
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http://www-cms.ornl.gov/composites/

• Select ‘Reports’ for 
documentation
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Modeling of Discontinuous  Fiber Composites

= Objective
Develop analytical and numerical tools for predicting mechanical response of 
discontinuous carbon fiber composites subjected to impact loading.

= Accomplishments
- Developed constitutive models based on micro-mechanical formulation and 

combination of micro- and macro-mechanical damage criteria.
- Incorporated developed models with probabilistic micro-mechanics for 

evolutionary damage in composite materials.

- Investigated effect of weakened interface (partial debonding) by employing an 
equivalent, transversely isotropic inclusion.

- Extended developed model to include crack effects on mechanical response of 
composite materials.
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= Accomplishments (Continued)
- Developed micromechanics-based inter-fiber interaction formulation for 

modeling of composites with high fiber volume fraction.

- Implemented models into finite element code DYNA3D to perform impact 
simulation of composite materials.

- Performed numerical simulations for Biaxial Test of Cruciform Shaped 
Composite Specimen and Four-point Bend Test in order to evaluate ability of 
developed composite model to predict experimentally obtained response. 

- Performed parametric studies to evaluate constitutive model sensitivity to 
Weibull parameter So.

Modeling of Discontinuous  Fiber Composites
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Outline

= Micromechanics-based Constitutive material model

= Progressive damage model

= Crack and inter-fiber interaction effects 

= Finite element implementation for impact simulation

= Iterative algorithm for progressive damage model

= Biaxial impact simulation of cruciform shaped composite specimen

= Four-point bend simulation

= Summary and future directions
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Heterogeneous composites

I II

σo or εo σo or εo

Equivalent homogeneous 
media with appropriately 

defined properties

Fiber

Matrix

Micromechanics 
Based modeling

Micromechanics and Equivalence Principle
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Composites with Aligned Discontinuous Fibers

= Effective elastic moduli of multi-phase composites containing 
randomly located, aligned elastic ellipsoids (see publication #2) 

= Total stress at any point x in the matrix
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= Ensemble-averaged stress norm for any matrix point x

= Effective yield function for fiber-reinforced composites

Composites with Aligned Discontinuous Fibers
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= Orientational averaging process (see publication #1) 

= Governing equations for randomly oriented fiber-
reinforced composites

Randomly Oriented, Discontinuous Fibers
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Progressive Damage Model

Ma trix (phase 0)

Crack (phase 1)

Perfectly bonded
fiber (phase 2)

Pa rtia lly debonded
fiber (phase 3)

The initia l sta te The damaged sta te

= A schematic of aligned fiber composites subjected to uniaxial tension.
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See Figure A.

Equivalence Principle for Partially Debonded Fibers
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See Figure A.

Equivalence Principle for Partially Debonded Fibers
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= Weibull probabilistic distribution function for fiber 
debonding (damage) 

l Current debonded (damaged) fiber volume fraction 

Progressive Damage Model
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Penny-Shaped Cracks

Spheroidal inclusion

= Penny-shaped cracks are regarded as the 
limiting case of oblate spheroidal voids with 
aspect ratio  α 0. 

= Various cracks with different crack size and 
orientation can be included into the 
constitutive model by adding the 
corresponding inclusion phases.

= Penny-shaped cracks are assumed to 
remain at the same crack density during 
the deformations.

= Effective elastic moduli for multi-phase 
composites containing various cracks is 
derived as (see publication #3):
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Effect of Cracks on Mechanical Behavior of Composite
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Inter-Fiber Interaction Formulation

Interaction
Collection

Local matrix point xm collects stress perturbations due to 
surrounding fibers with pairwise inter-fiber interaction.

= Approximate eigenstrain accounting 
for pairwise fiber interaction for 
multi-phase composites

o** : εε Γ>=<

= Effective elastic moduli for multi-
phase composites considering inter-
fiber interaction (The corresponding 
paper is in preparation.)
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= Inter-fiber interactions significantly affect the overall composite moduli when the contrast 
ratio is high (or low).
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Inter-Fiber Interaction Formulation
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Finite Element Implementation for Impact Simulation

= Model is implemented into finite element code DYNA3D to 
perform impact simulation of composite materials.

= Model uses strain driven algorithm to link with 
displacement based finite element code DYNA3D.

= Micromechanical iterative algorithm is used for modeling  
progressive damage.
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Iterative Algorithm for Progressive Damage Model

See Box 1.
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Iterative Algorithm for Progressive Damage Model

See Box 1.
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Return Mapping Algorithm

See Box 2.
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Return Mapping Algorithm

See Box 2.
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Cantilever Composite Beam under Impact    ……………                

Displacement at the free edge during impact Damage index, representing the volume fraction 
of damaged fibers, at free and fixed edges during 
impact
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Biaxial Test Simulations

= Planar biaxial tests of cruciform shaped composite specimen were performed by 
Waas and Quek (1999) to gain insight into constitutive behavior of damage 
induced composite materials.

= Numerical simulations of biaxial tests were carried out to examine whether the 
implemented computational model is able to predict the experimentally obtained 
response.

= Composite specimen was loaded proportionally with the rate of 30 lb/sec (130 
N/sec) in biaxial compression and tension in the ratio of 1:1.

= Material properties, volume fraction of fibers, and aspect ratio of fibers were  
Em=3.0GPa, nm=0.35, Ef=72GPa, nf=0.17, φ=0.5, and a =20.0. Default DYNA3D 
shell element formulation based on Belyschko-Tsay theory was utilized for 
modeling the composite specimen.
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See Figures 1 and 2.

Biaxial Test Simulations
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Damage Contours During Biaxial Loading

= Figures show a sequence of damage contours during biaxial loading. Damage zone emanates from the 
edges of the cutout.

= Figure 2 of previous slide and above figures show damage initiation and evolution along the x- and y-axes 
around the cutout, which corresponds to Waas and Quek [1] ’s observations. 

= Simulations are used for predicting the direction and the rate of damage propagation during the test.
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Four-Point Bend Simulation

= For progressive crush tests of composite tubes, flexural properties and the 
corresponding damage mechanisms of components must be characterized. 

= Four-point bend test is commonly used for determining the flexural properties of 
high-strength composites.

= To assess the predictive capability of the computational model for simulating  
impact damage of composite structures, numerical four-point bend simulations 
were carried out.

= In order to avoid excessive indentation, or failure due to stress concentration 
directly under the loading nose, the loading nose in contact with the specimen 
must be sufficiently large. 

= Rigid loading noses and rigid supports were modeled as the master surface and 
the set of nodes on the composite plate as the slave contact node set.
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= Figures show the maximum damage at surfaces located around loading noses.

Sequence of damage contours and deformed shape during four-point bend impact

Four-Point Bend Simulation
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Four-Point Bend Simulation
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= Simulation will be performed with a geometrical trigger at the center of the specimen.

Time-history plots for the damage index at the contact surface near 
loading nose and at the center between loading nose and support
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Parametric Study for Weibull Parameter So

= Influence of the value of Weibull parameter So, which is related to the interfacial strength, 
on the damage evolution in composite. 
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σy: yield stress of the matrix

Damage index, representing the volume fraction of 
perfectly bonded fibers, during four-point loading 
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Summary

= Emanating from a constitutive damage model for aligned fiber-reinforced 
composites, a micromechanical damage constitutive model for random fiber-
reinforced composites was developed to perform impact simulation of random 
fiber-reinforced composites for automotive applications.

= Evolutionary interfacial debonding model and a crack-weakened model were 
subsequently employed in accordance with the Weibull's probability function to 
characterize the varying probability of fiber debonding.

= Micromechanics-based inter-fiber interaction formulation has been developed to 
model composites with high fiber volume fraction.

= Developed constitutive model is able to simulate mechanical behavior of new 
composite materials (e.g., P4) containing cracks of different sizes and 
orientations by adding the corresponding inclusion phases.
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Summary

= Constitutive models were implemented into the nonlinear finite element code 
DYNA3D using a user-defined material subroutine to simulate the dynamic 
inelastic behavior and the progressive damage of the composite materials.

= Composite impact simulations were carried out to predict the experimentally 
obtained response during impact. 

= Based on the numerical simulations, we can draw the conclusion that although
more experimental work is needed to determine the damage parameters, the 
implementation of a new constitutive model into the finite element code 
DYNA3D has resulted in a promising numerical tool for the simulation of 
progressive damage in impacted composite structures.
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Future Directions

= Develop laboratory experiments and procedures for 
characterizing basic damage mechanisms and monitoring the 
damage evolution during impact using nondestructive evaluation 
techniques.

= Conduct further assessment and experimental validation of the 
developed damage models to simulate composite crushing 
problems.
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Damage Modeling of RFC Composites

• Prone to failure by accumulation of damage and growth 
of cracks

• The failures have origins in microstructural defects such as 
– Micro-cracks in matrix material
– Weak material interfaces
– Voids and secondary crack surfaces

• Mechanical performance is directly related to resist failure 
by crack initiation and subsequent growth, i.e. the
Fracture Toughness of the material
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Damage Modeling of RFC Composites

• Build upon existing theories that account for the 
microstructure of the material

• Allow for the evolution of the microstructure by 
employing the governing physical laws 

• Model the stress relaxation/softening with evolving 
microstructure

• Use traditional fracture mechanics based testing 
methods to calibrate the model
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• Several studies in literature focused on the
prediction of properties of micro-cracked 
solids

• Studies take into account the micro-crack 
opening, frictional sliding, crack interaction 

• Consider only a stationary system of micro-
cracks. Examples are the

– Self Consistent scheme
– Differential Scheme

 c

∆σ

Ds

Properties of Micro-cracked Solids
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Crack density, ρ
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• Self Consistent Estimates
(Budiansky & O’Connell, 1976)
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Evolving Microstructure

∆σ

Dt

• During material failure, exiting micro-cracks 
grow in size, new micro-cracks are formed, and 
they subsequently interact and coalesce

• Energy absorbed is determined by these failure 
mechanisms which affect the post-failure response 

• In computational modeling 

– Need to estimate the tangent moduli Dt
for an evolving system of micro-cracks

– Capture stresses relaxation accompanying 
accumulation of damage



Bringing Science to Life
© CMS Group 2000

www-cms.ornl.gov

Rate Constitutive Relations

( ) ε=σ :N,cDs

• Constitutive relation for elastic material with micro-cracks 
distributed statistically uniformly

ε
∂
∂

+ε
∂

∂
+ε=ε+ε=σ :N

N
D

:c
c

D
:D:D:D ss

ess
&&&&&&

• Rate equations for evolving microstructure are obtained as 

• Constitutive description is complete by specifying
– Micro-crack growth rate,
– Micro-crack nucleation rate,   

c&
N&
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Micro-Crack Growth & Nucleation Rates

Experimental observations reveal 
– Cracks grow at a fraction of Raliegh surface wave 

speed (Ravi-Chandar & Knauss 1984, Freund 1998)
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– Crack nucleation is governed as (Seaman et al.,1976)
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Micro-Crack Stability

σ

σ

• Micro-crack stability is governed by
energy balance as specified by Griffith
fracture theory

• The stress state, normal and shear 
stresses, surrounding a crack tip 
governs the crack driving energy, G

• Cracks growth when crack driving energy G is greater 
than the fracture toughness of material, ΓR
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Stresses on a Micro-Crack

• Normal traction on a micro-crack

 n

Sc

V

T

σ

σ

jiijn nnσ=σ

• Shear traction on a micro-crack

( )[ ] 212
jiijkikjijt nnnn σ−σσ=σ

• Frictional resistance stress are

( )jiij0r nnσµ−σ=σ
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Micro-Crack Stability Criteria

• Crack growth under tension  ( )0nn jiijn ≥σ=σ
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jiijkikjijiijn ≥−σ
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=

• Crack growth under compression  ( )0nn jiijn <σ=σ

Application of Griffith Criteria for a penny shaped 
micro-crack results in the following crack stability 
criteria (Addessio & Johnson 1990)  
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Damage Surfaces

( ) ( ) 0dVdcd,cwc,n,F
Vc

iij ≥ΩΩσ∫∫∫
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• Continuum level representation of micro-crack stability
criteria is a damage surface and is obtained through the 
following volume average procedure 
(Addessio & Johnson 1990)  

w(c,Ω) – Crack distribution function

• The resulting damage surface are defined in terms of the 
scalar parameters, p and q, defined as
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Damage Surfaces

• In tension, p < 0, damage surface is obtained as
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• In compression, p > 0, damage surface is obtained as
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(Addessio & Johnson 1990)
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Damage Surfaces
Graphical plot of the damage surface in the (p,q,c) space
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Damage Surfaces

Graphical plots of the damage surface in the (p,q) space
for various fixed values of micro-crack length, c
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Dissipative Nature of Material

• As cracks grow crack distribution evolves and the 
stiffness/compliance varies in time

σ+σ=ε :C:C ee
&&&

• Rate equation for a Maxwell solid
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E η

• Material behaves as a Maxwell solid
with a variable relaxation time, τ
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Material Point Constitutive Algorithm
1. Initialize: cn+1 = cn, εn+1 = εn + ∆εn+1

2. Compute Ds(Ee,νe,cn+1,N0) and ∆σ = Ds:∆εn+1

3. Compute pn+1 and qn+1 and Fd(pn+1,qn+1,cn+1)

4. If Damage Surface, Fd < 0. YES: EXIT

ELSE: Evolve micro-cracks
5. Compute incremental micro-crack growth

( )
1nRnn1n vtcc

++ σα∆+=
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Material Point Constitutive Algorithm

6. Update the Moduli Ds using, cn+1

7. Update stresses using incremental constitutive 
equation 

( ) 1nn1n
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1ne
n1nen1n :cc
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∂
+ε∆+σ=σ

8. EXIT
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Material Parameters

E0 = 4.4 x 1011 Pa
ν0 = 0.16
ρ = 3177 Kg/m3

σ0 = 0.0
ΓR = 10.13 N/m
µ = 0.26

N0 = 1011 m-3

c0 = 14 µm

ρ0 = Nc0
3 = 2.744 x 10-4

Representative of SiC material
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Uniaxial Strain Tension
Load path in the (p,q,c) space
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Uniaxial Strain Compression
Load path in the (p,q,c) space
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Effect of superimposed hydrostatic pressure on subsequent
stress softening

A – Stress path without
superposed hydrostatic
pressure

B – Stress path with
superposed hydrostatic
pressure after peak 
in curve A

A

B



Bringing Science to Life
© CMS Group 2000

www-cms.ornl.gov

% ε

0.0 0.1 0.2 0.3 0.4 0.5

St
re

ss

0.0

2.5e+8

5.0e+8

7.5e+8

1.0e+9

1.3e+9

1.5e+9

Softening –Triaxial Strain Tension
Effect of superimposed hydrostatic pressure on subsequent
stress softening

B

A

A – Stress path without
superposed hydrostatic
pressure

B – Stress path with
superposed hydrostatic
pressure after peak 
in curve A



Bringing Science to Life
© CMS Group 2000

www-cms.ornl.gov

Experimental Measurement of ΓR

 a

P• The various energy dissipating damage
mechanisms are expected to result in an
R-curve like crack growth in RFCC’s
(Gaggar & Broutman, 1975)

• Device a SEN or a DCB test specimen 
program to evaluate the R-Curve 
for the composite
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Calibration of N and c0

 u

 P
 a

 u

P

• Use the experimentally obtained
P-u curve to calibrate the model

• Numerically simulate the test to 
reproduce the P-u curve and obtain
representative values for N and c0
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Delamination Failure of Composites

• Failure in RFC composites is observed to occur through
delamination between plies in the composite

• Delamination involves propagation of crack surfaces 
accompanied by energy dissipation 
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Delamination - Cohesive Elements

σ σ

• Energy dissipation during delamination occurs within 
the cohesive zone located ahead of propagating crack front

• In computational modeling of delamination, cohesive 
elements are a powerful tool to model automatic failure
initiation and subsequent propagation

Cohesive Zone Cohesive Element
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Cohesive Zone Potentials

∆n∆t

φ

• Cohesive Zone Potentials, φ, are used to represent energy 
dissipation occurring during delamination
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• Potentials allow for coupling of deformation between 
the normal and tangential modes of delamination
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δcr ∆t

Tt
Tn

δcr ∆n

Tn
Normal Tractions Tangential Tractions

δcr - Critical opening displacement

• Model parameters are ( )∫
δ

∆∆∆∆=Γ
cr

0
n2t1tnn0 d,,T

• Tractions across crack faces are obtained as 
( )

etc,
,,
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Cohesive Zone Tractions
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• Cohesive element implemented in DYNA3D 
• Verifies our implementation of cohesive element
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Future Efforts
• Develop better approximations to micro-crack growth 

velocity based on analytical solutions for a penny-shaped
crack under dynamic loading conditions

• Consider effects of fibers and surrounding micro-cracks 
on energy release rate and corresponding damage surfaces

– Stang 1986 and Pijauder-Cabot & Bazant 1991
– Effects of secondary tensile cracks in compression

• Obtain a plane stress formulation for use with shell 
elements 

– σ33 = 0, ∆ε3 in not kinematically specified
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Future Efforts
• Investigate into the reduced integrated versus the fully 
integrated shell formulations to be used with the model
effectively

– Belytschko-Tsay element
– Hughes-Liu element

• Formalize the experimental program for the calibration
of the model

• Simulate the quasi-static and dynamic RFC composite 
crush tube tests
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P4 Microstructure Model

• Model currently simulates fiber deposition, only
• Complete process model should include preform

compression, resin infusion and curing
• Model is used for linking of manufacturing 

process to resulting mechanical properties
• P4 fiber deposition simulation provides 

information for micro-mechanical model to 
account for characteristic distributions of preform
and fiber properties
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Fiber Deposition Process

10 fibers 50 fibers

100 fibers 460 fibers
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Fiber Deposition Model

• Process variables used in simulation:
– Spatial and orientation distributions
– Fiber length, cross-section area, filamentization, 

flexibility, cross-section deformation

• Programmed deposition results in characteristic 
fiber property distributions

• Process variables ultimately determine distribution 
of effective material properties
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P4SIM Program Control
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Preform Analysis

• Fiber-fiber and fiber-resin
contact areas indicate
interaction between
constituents

• Preform sectioning in longitudinal and through-thickness 
direction indicate effective lamina properties distributions, 
and representative volumes, and delamination paths
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Preform Analysis

• Line representation is 
used for analysis of 
longitudinal fiber 
properties

• Free volume analysis 
is used for 
determination of 
characteristic resin 
volume distribution
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Preform Measures

• Implemented measures:
– Fiber-to-fiber contact area distribution
– Fiber-to-resin contact area distribution
– Fiber longitudinal shape distribution
– Fiber cross-section distribution

• For random fiber deposition, fiber features vary in 
composite through-thickness direction
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Fiber-to-Fiber Contact Area

• Fiber flexibility 
in axial and 
cross-section 
directions 
control extent of 
contact

Layup Progression
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Fiber Shape Analysis - Wavelet Spectrum
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Fiber Shape Analysis - Power Spectrum
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Fiber Shape Analysis

• Plots are continuously updated during layup
• Fibres lying lowest in the layup bear the lowest 

frequency components (and fewer components in 
general)

• Fibers lying higher in the layup bear the highest 
frequencies since they must adjust to ever more 
complicated "substrates”

• Frequencies stabilize after certain thickness is 
reached
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Relevance to Material Modeling

• Fiber shape characterization is used for 
determination of equivalent fiber shape 
distributions in micro-mechanics-based model

• Fiber shape distribution and fiber-to-fiber/resin 
contact is used for solution of single fiber problem

• Material properties significantly vary in through-
thickness direction and influence delamination

• Distribution of preform elastic properties can 
indicate representative volume of material


