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A computational approach to the investigation of impact damage
evolution in discontinuously reinforced fiber composites

H. K. Lee

Abstract A micromechanical damage constitutive model
for discontinuous fiber-reinforced composites is devel-
oped to perform impact simulation. Progressive interfacial
fiber debonding and a crack-weakened model are consid-
ered in accordance with a statistical function to describe
the varying probability of damage. Emanating from a
constitutive damage model for aligned fiber-reinforced
composites, a micromechanical damage constitutive
model for randomly oriented, discontinuous fiber-rein-
forced composites is developed. The constitutive damage
model is then implemented into a finite element program
DYNA3D to simulate the dynamic behavior and the pro-
gressive damage of composites. Finally, numerical simu-
lations for a biaxial loading test and a four-point bend
impact test of composite specimens are performed to
validate the computational model and investigate impact
damage evolution in discontinuous fiber-reinforced com-
posite structures. Furthermore, in order to address the
influence of Weibull parameter S, on the damage evolu-
tion in composites, parametric analysis is carried out.

1

Introduction

Carbon fiber composites have been increasingly used for
primary structural components in aerospace, automotive,
and infrastructure applications. These materials have de-
sirable engineering properties (e.g., high strength and
stiffness, low density, long fatigue life, and high damage
tolerance) and can be tailored to meet the intended
function of the component. The success of the carbon fi-
ber-reinforced composites as a mainstream automotive
material depends on the development of the high-volume,
high-reliability and quality, and cost-competitive manu-
facturing process that results in the material that meets
and exceeds current automotive performance standards.
The Programmable Powder Preform Process (P4) has been
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developed in recent years and has demonstrated its feasi-
bility for automotive applications (Rondeau et al., 1999).
P4 is a robotically articulated process in which discon-
tinuous carbon fibers are deposited on the preform with
precise spatial and orientation distributions.

From the performance standpoint, the greatest chal-
lenge posed by chopped carbon fiber composites is that
they deform differently from the mild steel to which au-
tomotive designers are accustomed. This is the most ap-
parent in vehicle crash where the impact-absorption
components have to dissipate impact energy in a con-
trolled and prescribed manner in order to protect vehicle
occupants. The principal mechanisms by which crash en-
ergy is dissipated in composites are matrix cracking, fiber-
matrix debonding, fiber-rupture, and delamination. The
crashworthiness of automotive composite structures
therefore requires an effective control over the damage
processes and their sequence, the extent, and the interac-
tion of these mechanisms, so that uncontrolled global
failure is avoided (Waas and Quek, 1999).

It is well known that fiber-reinforced, organic matrix
composites are very susceptible to impact damage, espe-
cially at low velocities. Low-velocity impact can cause
significant damage inside the composites. Such damage is
very difficult to detect and may cause significant reduction
in the strength and stiffness of the materials. Furthermore,
because of the natural tendency of the structure to acquire
lower energy modes, both material and structural damage
processes need to be well understood and modeled to
simulate and eventually design the desirable sustained
crush of the component. Hence, accurate analysis and
simulation of the complete response of components and
systems in discontinuous fiber-reinforced composites are
essential and require accurate micromechanical constitu-
tive models. The predictive analytical and numerical tools
required to accurately evaluate and design carbon fiber
automotive structures for crush do not currently exist. In
order to successfully develop these tools, a damage con-
stitutive model that incorporates various damage and de-
formation mechanisms for discontinuous fiber-reinforced
composites is developed.

In our derivation, fibers are assumed to be elastic
(prolate) spheroids that are randomly oriented in a poly-
mer matrix. Penny-shaped cracks are assumed to remain
at the same microcrack density during the deformations.
After the interfacial debonding between the fibers and the
matrix, these partially debonded fibers are regarded as
equivalent, transversely isotropic inclusions. Governing
micromechanical ensemble-volume averaged (homoge-



nized) field equations are constructed to derive the effec-
tive elastic moduli of aligned, discontinuous fiber-rein-
forced composites. Emanating from the constitutive
damage model for aligned, discontinuous fiber-reinforced
composites, a micromechanical damage constitutive
model for randomly oriented, discontinuous fiber-rein-
forced composites is developed by employing the orien-
tational averaging process (Lee and Simunovic, 2000).
Progressive interfacial fiber debonding models are con-
sidered in accordance with a statistical function to de-
scribe the varying probability of fiber debonding. Only
dilute or moderate fiber reinforced composites will be
considered here.

The constitutive damage model is then implemented
into a finite element program DYNA3D using a user-de-
fined material subroutine to simulate the dynamic be-
havior and the progressive damage of composite materials.
Finally, numerical simulations for a biaxial loading test
and a four-point bend impact test of composite specimens
are carried out to investigate impact damage evolution and
examine whether the implemented computational model is
able to predict the experimentally obtained response. In
addition, parametric analysis is carried out to address the
influence of Weibull parameter S, on the damage evolu-
tion in composites.

2

A damage constitutive model for discontinuous
fiber-reinforced composites

When a three-phase composite containing aligned, ran-
domly dispersed, perfectly bonded fibers and penny-
shaped cracks (see Fig. 1a) is subjected to remote tensile
loading, some fibers may experience partial debonding on
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Fig. 1. A schematic diagram of aligned fiber composites
subjected to uniaxial tension

the top and bottom of the interfaces between the matrix
and fibers as deformations proceed (see Fig. 1b). The
composite becomes a four-phase material, consisting of a
ductile matrix (phase 0) with bulk modulus %, and shear
modulus p; perfectly bonded fibers (phase 1) with bulk
modulus x; and shear modulus u;; penny-shaped cracks
(phase 2); and partially debonded fibers (phase 3). The
partially debonded fibers will lose their load-carry capac-
ity, but they are still able to transmit internal stresses into
matrix through the bonded portion. Following Zhao and
Weng (1996, 1997) and Ju and Lee (2000), a partially
debonded fiber can be replaced by an equivalent, perfectly
bonded fiber that possesses yet unknown transversely
isotropic moduli. The transverse isotropy of the equivalent
fiber can be determined in such a way that (a) its tensile
and shear stresses will always vanish in the debonded di-
rection, and (b) its stresses in the bonded directions exist
because the fiber is still able to transmit stresses to the
matrix on the bonded surfaces (see Fig. 3.1 in Lee (1998)).
Penny-shaped cracks are assumed to remain at the same
microcrack density during the deformations.

Governing micromechanical ensemble-volume averaged
field equations for linear elastic composites containing
arbitrarily non-aligned and/or dissimilar ellipsoidal in-
clusions were derived by Ju and Chen (1994a). A nor-
malization procedure was employed to render absolutely
convergent integrals. For a multi-phase composite, the
volume-averaged strain tensor € assuming no interaction
among constituents reads

€:e°+izn:¢,¢ssrs D€ (1)

r=0 s=0

where €° is the uniform strain field induced by far-field
loads for a homogeneous matrix material only; n denotes
the number of inclusion phases of different material
properties (excluding the matrix); ¢, represents the vol-
ume fraction of the r-th phase inclusion; the fourth-rank
tensor S” (r,s = phase numbering indices), which is re-
lated to renormalized integrals, is given in Eq. (12) of Ju
and Chen (1994a); and € signifies eigenstrain of r-th
phase and is given by

€=—(A+8)":€ (2)
in which the fourth-rank tensor A, is defined as
A =(C,—Co) -G (3)

Here, C, is the elasticity tensor of the r-phase. Eshelby’s
tensor of a spheroidal inclusion S, for r-th phase inclusion
was previously derived by Lee and Simunovic (2001); see
Egs. (19)-(26) therein.

The ensemble-volume averaged stress field ¢ for a
multi-phase composite was also derived by Ju and Chen
(1994a) as

6:C0:[€—i¢réf]EC*:é (4)

Eq. (1) together with Eqgs. (2) and (4) renders the following
effective stiffness tensor for a multi-phase composite
medium:
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I+Zn:{¢r(Ar+sr)“
{ ZZS’S(A +5,)

r=0 s=

W)

where I is the fourth-rank identity tensor.
Unidirectionally aligned penny-shaped microcracks can
be regarded as the limiting case of unidirectionally aligned
spheroidal voids with the aspect ratio a3 — 0 (see Fig. 2).
That is, one can collapse one axis of a spheroidal micro-
void to recover a penny-shaped microcrack. In our deri-
vation, fibers are assumed to be elastic prolate
(a1 > a, = a3) spheroids that are initially perfectly bonded
in the matrix. Penny-shaped microcracks are regarded as
oblate (a; < a, = a3) spheroids and remain the same
volume fraction during the deformations. Furthermore,
fibers and penny-shaped microcracks are assumed to be
aligned; therefore, Eq. (5) can be simplified as

C. = I+zn:{¢r(Ar+Sr)“
r=1

(©)
1= ¢S (A + s»l]l}}

Accordingly, in the case of aligned (in the x;-direction)
crack-weakened, chopped fiber composites, the effective
elastic stiffness tensor C, can be explicitly derived as

C, = ﬁijkl(TlaTZ,TSa T4, Ts, To) (7)

where the definition of fourth-rank tensor F is given in
Eq. (2) of Lee and Simunoviv (2000) and the inverse and
product of a fourth-rank tensor F are given in the ap-
pendix of Ju and Chen (1994b). The components 7y, ..., ¢
are given in the appendix.

Assuming all fibers and microcracks in the composite
changed from aligned array to three-dimensional random
array, the effective elastic moduli of crack-weakened,
(randomly oriented) chopped fiber composites can be
obtained by applying the orientational averaging process
proposed by Lee and Simunovic (2000). Assuming the
uniform distribution of overall strains, the effective elastic
stiffness tensor C C,. D in Eq. (7) is averaged over all
orientations as

Fig. 2. Schematic description of a spheroidal inclusion

1
CCO=— / / il (C2) ynpg il sin 0 d0 dep
0

0
= 6100k + 62(Sik0j1 + didjk) (8)

(gl = i [’Cl + 5(‘[3 + T4 -+ 3‘55)} (9)

15
1
(gz [’Cl + 10'52 + 15‘[6] (10)

15
where [;; denotes the directional cosine between i-th
primed and jth unprimed axes. More detail of the orien-
tational process can be found in Lee and Simunovic
(2000).

3
Weibull function for damage evolution
The progressive, interfacial debonding may occur under
increasing deformations and influence the overall stress-
strain behavior of composites. After the interfacial deb-
onding between fibers and the matrix, the debonded fibers
lose the load-carrying capacity in the debonded direction
and are regarded as partially debonded fibers. In the
constitutive relation it is assumed that the debonding of
fibers is controlled by the stress of the fibers and the sta-
tistical behavior of the fiber-matrix interfacial strength as
shown in Fig. 3. Further, we employ the hydrostatic tensile
stress of fibers (gy),, as the controlling factor. The Weibull
(1951) distribution is chosen among several probability
distribution functions used frequently in engineering fields
to model the assumed cumulative probability of the in-
terfacial debonding in Fig. 3; see also, Tohgo and Weng
(1994), and Zhao and Weng (1996, 1997).

We now turn to the problem of dealing with the Weibull
statistical function. The Weibull probability density func-
tion (three-parameter function: g, b, and ¢) is defined as

-
/
/
08+ / .
//
Gf=Gy /
__06F _ / .
= /
- 04 |- / ]
/
/
02r // q
/
0.0 ' ! * *
0 1 2 3 4 5 6 7 8
(opmfoy

Fig. 3. Probability of normalized cumulative volume fraction
of debonded fibers as a function of normalized interfacial bond
strength
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subject to the following conditions

c<x <+

a,b>0,

(12)

The probability Pr that the random variable X will be
between the two points on the real line x, and x; is

c>—©0

Pr(x, < X < x,) = / p(x)d(x) (13)

a

The probability distribution function P(x) is the integral of
the probability density function:

P(x) = / p(x)dx = Pr[X < x] (14)

where P(x) is the probability that the random variable X
will have a value equal to or less than x. The mean of X and
its variance are

)
-l (O] i ()

in which the Gamma function I'(+) is defined as

r(r) = / ¥ exp(—y)dy

(15)

—~

16)

(17)

Now let us consider applying the Weibull process men-
tioned above for progressive damage modeling. A Weibull’s
statistical function to describe the probability of fiber deb-
onding (damage) at the level of hydrostatic tensile stress

(c < (0f),, < 00, ¢ =0) can be obtained by replacing a, b,
and x in Eq. (11) with M, S,, and (oy),,, respectively.

rend= ([ oe{ [} 00

where the hydrostatic tensile stresses of the fibers
(0f) = [(011)f + (azz)f + (033)](}/3. The constants S,
and M in Eq. (18) are scale (Weibull modulus) and shape
parameters of the Weibull function, respectively.

The Weibull probability distribution function for cu-
mulative fiber debonding at the level of hydrostatic tensile
stress reads

Pi(op) = |

T g

pl(of) ,1d(of),,

Finally, the current partially debonded (damaged) fiber
volume fraction ¢, at a given level of (oy),, is given by

by = ¢ Pal(of),,) = ¢ {1 TP [_((?J)M] }

(20)

where ¢ is the original fiber volume fraction. The (inter-
nal) stresses of fibers required for the initiation of inter-
facial debonding can be found in Ju and Lee (2000) and
Lee and Simunovic (2001). Figure 4 shows the evolution of
volume fraction of debonded fibers versus strains and il-
lustrates the influence of Weibull modulus on the extent of
damage.

Furthermore, with the Weibull distribution function,
the relationship between average interfacial bond strength
denoted by 67 and the Weibull modulus S, can be obtained
through the Gamma function (M = 5)

1 [ s
of = SOF<1 +M> =S, / x5~ exp(—x)dx = 1'89

0

(21)
where the quality of the interfacial bond strength o be-
tween fibers and the matrix is important in composite
strengthening and interfacial debonding. It has been re-
ported that the average interfacial bond strength o in
composites is related to the yield stress of composites g,
(e.g. or = 1 ~ 100,; see Goan and Prosen, 1969; Flom and
Arsenault, 1986; and Ochiai and Osamura, 1988). Conse-
quently, there are two ways to measure the Weibull
modulus S,: (a) experimental prediction: the value of S,
can be measured through the relationship between 67 and
S, in Eq. (21) after direct experimental measurement of
the interfacial bond strength &¢; (b) parametric evaluation:
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Fig. 4. The predicted evolution of volume fraction of debonded
fibers versus strain
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following the experimental observations mentioned above,
the value of S, can be chosen to yield some simple inter-
facial strength conditions in damage modeling as a para-
metric study. For example,

o =0, — S, =1.090,; weak interfacial strength

of = 30, — S, = 3.270,; intermediate interfacial

strength

or = 106, — S, = 10.90,; strong interfacial strength.

4
Finite element implementation
and numerical simulations
The constitutive model derived is implemented into the
nonlinear finite element code using a user-defined material
subroutine to simulate the dynamic behavior and the
progressive damage of the composite materials. While the
implicit integration is chosen with an automatic time in-
crement because it is not restricted to mildly nonlinear
deformations or short response times, the explicit method
is computationally attractive when the response time of
interest is within an order of magnitude of the time it takes
for a stress wave to travel through the shell thickness.
Accordingly, the developed damage models are imple-
mented into the explicit finite element code DYNA3D for
impact simulation required a very small time step. The
methodology used in this work is based on the well-known
strain-driven algorithm in which the stress history is to be
uniquely determined by the given strain history, mainly
because of its computational efficiency in the framework
of explicit time integration computer program DYNA3D.
Box 1 summarizes the iterative computational algo-
rithm for the damage behavior of four-phase, discontin-
uous fiber-reinforced composites accounting for damage
evolution. It renders a step-by-step flow chart for the
computational procedure to determine the current

damaged fiber volume fraction in accordance with the
Weibull function for damage evolution in Sect. 3.

4.1

Numerical simulations for a biaxial test of cruciform
shaped composite specimen

Planar biaxial tests were performed by Waas and Quek
(1999) to gain insight into the constitutive behavior of
damage induced composite materials. Towards reaching
this goal, a number of biaxial tests with cruciform shaped
specimens containing centrally located cutouts were car-
ried out. Numerical simulations for the biaxial test are
carried out to examine whether the implemented compu-
tational model is able to predict the experimentally ob-
tained response. The geometry and loading conditions in
this problem are symmetric along the x- and y-axes. The
composite specimen is loaded proportionally with the rate
of 30 1b/s (130 N/s) in biaxial compression and tension in
the ratio of 1:1. A computational model of the cruciform
shaped composite specimen and loading conditions are
shown in Fig. 5. The material properties, volume fraction
of fibers, aspect ratio of fibers, and Weibull parameters
involving these simulations are Ey = 3.0 GPa, vy = 0.35,
E; =72.0 GPa, v; = 0.17, ¢, = 0.3, 2 = 5.0,

S, = 165 MPa, and M = 4.0. The default DYNA3D shell
element formulation based on Belyschko-Tsay theory is
utilized for modeling the composite specimen.

Figure 6 shows the sequence of damage contours during
biaxial loading, representing the growth of damage zone
due to the advancing damage one emanating from the
edges of the cutout. Time history plots for the damage
index ¢; (current volume fraction of damaged fibers)
around the cutout of the composite specimen are shown in
Fig. 7. Figures 6 and 7 exhibit the damage initiation and
evolution along the x- and y-axes around the cutout, which
correspond with Waas and Quek’s (1999) observations.
These simulations can be used for predicting the direction
and rate of damage propagation during biaxial test.

Box 1. Iterative algorithm for . . .
progressive damage model (i) Estimate Weibull parameters:
(iii) Compute:

Effective moduli: (E*)ifll ,

Internal stresses of fibers: [(Gm)1]

So,

M
(ii) Initialize: set z = 0; (§;)sy = (d1),s (D3)rs = (),

()%

(@)

z
n+1

(iv) Compute the Weibull probability distribution function:

Pa{[(@n) )i} =1 - exp {—

(v) Compute volume fractions:

([(Um)l]ﬁl)M:|
So

(@)% = ¢ Pa{[(@m) S} = ¢ - {1 —exp {— (“&m;l“ﬂ') } }

($1)h = & = (93)i2
(vi) Perform convergence check:
@ _(4 D
If | @uis <(z<f11))n-1
(P1)nt
(B iy = (Bl ()
(@1)ns1 = (@)1 (0

‘ < TOL (e.g., 107%): then update quantities in (iii), (v)

w1 = 0050 (@) = (@), (1=1,2,3);

)n+1 = (d)s)(ﬁﬁ EXIT.

Otherwise: SET z =z + 1; GO TO (iii).
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Fig. 5. Finite element discretization employed to simulate the
damage evolution of cruciform shaped specimen during biaxial
loading

4.2

Four-point bend impact simulations

In crush tests of automotive composite tubes, flexural
properties and the corresponding damage mechanisms of
components must be characterized. A four-point bend test,
which is suitable for high-strength materials, is commonly
used for determining the flexural properties of high-
strength composites. To assess the predictive capability of
the computational model for addressing the impact dam-
age of composite structures, numerical four-point bend
impact simulations are carried out. The composite plate,
loading noses, and supports are modeled based on ASTM
D 790 developed for determining the flexural properties of
chopped fiber-reinforced plastics. In order to avoid ex-
cessive indentation, or failure due to stress concentration
directly under the loading nose, the arc of the loading nose
in contact with the specimen must be sufficiently large to
prevent contact of the specimen with the sides of the nose.
In DYNA3D program this requirement is satisfied by
specifying the rigid loading noses and rigid supports as the
master surface and the set of nodes on the composite plate
as the slave contact node set. The nodes of the loading
noses are given at an initial velocity of 8.6 m/s in the
negative direction. The default DYNA3D shell element
formulation based on Belyschko-Tsay theory is utilized
for modeling the composite plate. We employ the same
material parameters for the composites as those used in
the simulations for a biaxial test.

Figure 8 shows the sequence of damage contours and
deformed shape during four-point bend impact, showing a
maximum damage at the surface of the composite plate
around loading noses. Time history plots for the damage
index ¢; at the contact surfaces of the composite plate
around loading noses and at the center between loading

noses and supports are shown in Fig. 9. It is observed from
Figs. 8 and 9 that the implemented computation model can
be used for predicting impact damage evolution of com-
posite structures. Specifically, more four-point bend im-
pact simulations will be performed with a geometrical
trigger at the center of the plate to characterize the con-
stitutive response and damage evolution of composite
structures under crush.

4.3

Parametric study of Weibull parameter $,

Weibull parameter S, given in Eq. (19) is related to the
interfacial strength between fibers and the matrix. To il-
lustrate the influence of Weibull parameter S, on the
damage evolution in composite materials and evaluate
constitutive model sensitivity to Weibull parameter S,,
parametric analysis is carried out. As a debonding prop-
erty of the fiber-matrix interface, four sets of the Weibull
parameters are used: S, = 0.109 % 150 MPa and M = 4;

S, = 0.80 * 150 MPa and M = 4; S, = 1.09 * 150 MPa and
M =4; and S, = 10.9 * 150 MPa and M = 4. For com-
parison, four-point bend impact simulations are con-
ducted using the same finite element model as used in
four-point bend impact simulations. We plot time history
for the volume fraction of perfectly bonded fibers ¢, for
various values of Weibull parameter S, at the contact
surface of the composite plate around loading noses dur-
ing four-point bend impact in Fig. 10. As shown in Fig. 10,
if the interfacial strength between fibers and the matrix is
low (lower S,), most fibers are debonded in early stage and
the material will show the nonlinear behavior. It is con-
cluded from the parametric study that the influence of
Weibull parameter S, on the constitutive behavior and
damage evolution of the composite is quite remarkable;
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Fig. 6. The sequence of damage contours during biaxial
loading, showing the damage zone emanating from the edges
of the cutout

Fig. 8. The sequence of damage contours and deformed shape
of composite plate during four-point bend impact
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loading noses and supports during four-point bend impact

therefore, further laboratory experiment is needed to
determine the Weibull (damage) parameters.

5

Concluding remarks

Emanating from a constitutive damage model for aligned
fiber-reinforced composites, a micromechanical damage
constitutive model was developed to perform impact
simulation of randomly oriented, discontinuous fiber-re-
inforced composites. Evolutionary interfacial debonding
model and a crack-weakened model were subsequently
employed in accordance with the Weibull’s probability
function to characterize the varying probability of fiber
debonding. By adding the corresponding inclusion
phases, the extension of the constitutive model to predict
the mechanical behavior of new composite materials (e.g.
Programmable Powder Preform) in which discontinuous
carbon fibers are deposited on the preform with precise
spatial and orientation distributions containing cracks of
different sizes and orientations is possible.

In the derivation, the analogy for the equivalence
between partially debonded fibers and the transversely
isotropic perfect spheroids was valid only for uniaxial
loading. Although the current approach can deal with
partial debonding on different fiber location by adding
the corresponding equivalent inclusion appropriately,
the implementation of different partial debonding results
in expensive finite element simulations. However, the
extension of the current formulation to be able to deal
with different partial debonding is straightforward.
Further, fiber debonding was considered as a primary
damage mechanism under impact. However, increasing
the crushing speed in fiber-matrix composites automat-
ically influences the failure phenomena, and failure type
can evolve from being fiber debond dominated to one
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Fig. 10. Time history plots for ¢, for various values of Weibull
parameter S, at the contact surface of composite plate around
loading noses during four-point bend impact

that is dominated by matrix cracking. Therefore, the
model will be extended to be able to accommodate the
necessary failure mechanisms under impact in a forth-
coming paper.

The constitutive damage model was then implemented
into a finite element program DYNA3D to simulate the
dynamic behavior and the progressive damage of com-
posite materials. Numerical simulations for a biaxial
loading test and a four-point bend impact test of com-
posite specimens were carried out to validate the compu-
tational model and investigate impact damage evolution in
discontinuous fiber-reinforced composite structures. Fur-
thermore, parametric analysis was performed to address
the influence of Weibull parameter on the damage evolu-
tion in composites. Based on the numerical simulations
and parametric study, we can draw the conclusion that
although more experimental work is needed to determine
the damage parameters, the implementation of a new
constitutive model into the finite element code DYNA3D
has resulted in a promising numerical tool for the simu-
lation of progressive damage in impacted composite
structures.

Appendix
Parameters 1, ..., T¢ in Eq. (7)
These parameters take the form:

3

T = 2H Z(mr)1

r=1

3
Ty = 2l Z(mr)z
r=1

3= /o Z[(mr)1 + 4(m,), + 3(m,)s] + 2 Z(mr)z»

r=1 r=1
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3
Ty = 24y Z(mr)4
r=1

r=1

where e, ..
fourth- rank tensor Fz]kl[eb cey

qkl[fl, .
T5 = /10{1 + Z[(mr)z; + 3(mr>5 + Z(mr)&} h=

,es in Eq. (25) are the parameters of the
eg], which is the inverse of
.,fs] with the following parameters

K1
3Kk1 + 41y

3 (22) f2 = -
+2u, Z(mr)s N
= = tm
3 3Kl + 4:“1 (27)
1 R
Tg = 2y | = + m, N sl St S
° °2 ;( )6] f 3ir + 4y T
in which (m,),, ..., (m,)s are the parameters of the fourth- - Ok 1 — Ao
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