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a Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology,

Guseong-dong, Yuseong-gu, Daejon 305-701, South Korea
b Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164, United States

Received 17 June 2005; received in revised form 25 October 2005; accepted 17 February 2006
Abstract

A constitutive model based on a combination of a fracture-mechanics based model and micromechanical formulations is developed to
predict the crack evolution and effective mechanical behavior of damage-tolerant brittle composites. The constitutive model is cast in a
rate form and considers microcrack nucleation rate and microcrack growth rate. The effective moduli of the composites containing dif-
ferent crack distributions are formulated using the self-consistent method and differential scheme. The constitutive model is then imple-
mented into finite element codes to solve boundary value problems of the composites. Numerical simulations on a benchmark problem
are carried out to illustrate the model features. Finally, to further assess the validity of the present framework, the present predictions are
compared with experimental data on brittle composites.
Published by Elsevier B.V.
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1. Introduction

Microcrack nucleation, growth and coalescence are the main mechanisms for degradation of effective elastic properties
of damage-tolerant brittle materials under monotonously increasing external loads [30]. It has been reported that the crack
nucleation is dominant during the early stages of load application [2], followed by the growth of nucleated cracks, and the
crack growth eventually results in coalescence of cracks [39]. These processes in general do not possess a recurring kine-
matic character that could be exploited for unification of the theory over a wide range of loading types and magnitudes.

Explicit modeling of the details of evolving damage and microstructure is still restricted to fundamental studies of mate-
rial [35,18,6,43,27]. The statistical aspects of failure of brittle materials, size effects, and fundamental description of damage
as a multi-scale phenomena have been an increasingly active area of research during the last decade [14,17,9,37,7,42,12].

In damage-tolerant brittle materials, the crack stress field enhancement is countered by the crack shielding, which in
some circumstances grants us precious increments of extrapolation of the mean field theories into the area of material
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softening [24,49,21,22]. This indicates our intent to apply the mean field model to the modeling of material failure. In doing
so, we are aware of the numerous limitations that have been challenged so many times in the past (see, e.g.,
[26,4,40,39,16,23,19,38]). However, the physics of the problem that we are interested in allows us to use such mean-field
model excursions to a moderate extent. The modeling of this final stage within continuum mechanics framework involves
theoretical and mathematical difficulties that so far have evaded unified theoretical and practical solutions.

A fracture-mechanics based constitutive model incorporating micromechanical formulations is developed in the present
study for modeling of crack evolution and effective mechanical behavior of damage-tolerant brittle composites. The novelty
in the present derivation is its rate form and the flexibility to represent a wide range of stress–strain curves with limited
number of model parameters. Moreover, the proposed model is capable of representing the softening effect that is a sig-
nature macroscopic characteristic of damage localization. The model is applicable for the situations in which softening
occurs by uncorrelated growth of cracks. It is also possible to extend the proposed model to be used within a cohesive band
framework [4] to account for localization of damage, or alternatively the discretization of a domain has to be such that the
finite element size corresponds to the characteristic size of failure localization features.

The following sections describe the model development and its implementation into finite element (FE) codes. The FE
numerical procedures for solving the system of equations constituting the material model have shown to be very important
for the numerical efficiency and stability of the model. Numerical simulations are carried out to illustrate key features of the
developed model. Finally, the prediction based on the developed model is compared with experimental data to assess the
validity of the present framework.
2. A fracture-mechanics based constitutive model for brittle composites

2.1. Overview

Let us start by considering a damage-tolerant brittle composite. We assume that the damaged state can be described by
the number of microcracks per unit volume N and the average size of microcracks �c. It is obvious that the microcracks in
the real composites will not be straight nor penny-shaped, and their size and orientation distributions will vary from spec-
imen to specimen. However, our premise is that their cumulative effect on the effective material properties can be qualita-
tively and quantitatively described by using simple approximation of the evolving microstructural disorder ðN ;�cÞ.

The two damage processes, crack nucleation and crack growth, are assumed to occur sequentially and independently.
The rationale for this assumption, besides the obvious motivation for a simplification of the problem, has roots in physics
and theory of damage evolution in damage tolerant materials. The process of microcrack nucleation is related to the dis-
tribution of the weak sites in the material [14,7,29]. In the heterogeneous materials, the process is stochastic and the micro-
cracks initiate uniformly across the material volume [17]. This allows us to model the nucleation process using a scalar field
that implies uncorrelated crack position and orientation. As the weak spots are depleted with the increasing load, the
microcracks start to grow. A shift of dominance from nucleation to crack growth is most likely gradual, and therefore
our approach can be portrayed as the first approximation to this transition. In the present derivation, the microcrack ori-
entation distribution is assumed to be uniform and the size distribution is assumed to be exponential. These assumptions
are more restrictive for the crack growth regime and can be eliminated by considering oriented systems of cracks.

In the present study, a microcrack nucleation model employing Seaman et al.’s [45] exponential rate equation is followed
by the application of the formulation of crack growth based on model by Addessio and Johnson [1]. Damage surfaces that
define regions of crack growth are based on the volume averaging procedures that implicitly assume absence of crack inter-
action. The appealing characteristic of this damage surface model is the minimal number of model parameters with respect
to the complexity of the process that it is describing. The simplicity commonly translates into robustness of numerical algo-
rithms when modeling complex problems.

The rate of crack growth is assumed to be a function of overstress, i.e., the distance in the stress space between the cur-
rent stress and the damage surface. For stress states that exceed the current damage threshold, cracks grow. The effective
moduli of brittle composites containing different crack distributions will be formulated using the self-consistent method
and differential scheme in Section 3. The details of the rate constitutive equations and rates of nucleation and growth
of microcracks are presented in the following sections.

2.2. Rate constitutive equations

The constitutive relation for a brittle composite with microcracks distributed in a statistically uniform manner can be
expressed as

r ¼ CðN ;�cÞ : �; ð1Þ
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where ‘‘:’’ denotes the tensor contraction, r is the macroscopic stress, C is the overall stiffness tensor and � is the macro-
scopic strain. It is assumed that the damage is proportional. Accordingly, the rate form of Eq. (1) can be proposed in addi-
tive form as

_r ¼ oC

oN
_N : �þ oC

o�c
_�c : �þ C : _�: ð2Þ

The material model is therefore defined by microcrack nucleation rate _N , microcrack growth rate _�c, and their respective
effect on the overall stiffness tensor.

A numerical integration algorithm needs to be employed to integrate the rate equation in Eq. (2). Let us assume that tn

(n = 1,2,3, . . . ,N) denotes the time at the end of the nth time step. We seek to determine the unknown state of a local point
at the end of the time step with the known results from the previous step. Since the calculation is repeated on a set of pro-
cedures, an algorithm that focuses only on a single time step from t = tn to t = tn+1 can be constructed. The increment of
total strain D�n+1 is either given or can be obtained from the given strain history. Thus, we have:

�nþ1 ¼ �n þ D�nþ1: ð3Þ
The following equations are available from the discretization

tnþ1 ¼ tn þ Dtnþ1; ð4Þ
�cnþ1 ¼ �cn þ D�cnþ1; ð5Þ
Nnþ1 ¼ Nn þ DN nþ1: ð6Þ

Consequently, the overall (macroscopic) stress rn+1 can be calculated as

rnþ1 ¼ rn þ C : D�nþ1 þ
oC

o�c
D�cnþ1 : �n þ

oC

o�c
D�cnþ1 : D�nþ1 þ

oC

oN
DNnþ1 : �n þ

oC

oN
DNnþ1 : D�nþ1: ð7Þ

Further, the incremental stresses, the incremental pressure, the pressure, and the deviatoric stresses can be obtained from
the following relations.

Drnþ1 ¼ Cnþ1 : D�nþ1; ð8Þ

Dpnþ1 ¼ �
1

3
ðDr11 þ Dr22 þ Dr33Þnþ1; ð9Þ

pnþ1 ¼ pn þ Dpnþ1; ð10Þ
qnþ1 ¼ qn þ ðDrnþ1 þ Dpnþ1dijÞ; ð11Þ

where dij denotes the Kronecker delta and the overall stiffness tensor C will be defined in Section 3.

2.3. Rate of microcrack nucleation

Through investigations of several materials [3,44,46,8], it has been shown that the nucleation rate of microcracks _N can
be expressed as exponential relations and satisfies the following relation [45]

_N ¼ _N 0 � exp
r� rn0

r1

� �
; r > rn0;

¼ 0; r < rn0;

ð12Þ

where _N 0 and r1 denote experimentally determined material parameters, and rn0 signifies the threshold stress for the nucle-
ation of microcracks.

According to the backward Euler method, the following approximation is made for the rate equation for crack
nucleation:

Nnþ1 ¼ Nn þ Dtnþ1
_N 0 � exp

ðrÞnþ1 � rn0

r1

� �
: ð13Þ

Consequently, Nn+1 can be evaluated by defining a scalar nonlinear equation f(Nn+1) at time t = tn+1:

f ðNnþ1Þ ¼ Nnþ1 � Nn � Dtnþ1
_N 0 � exp

ðrÞnþ1 � rn0

r1

� �
: ð14Þ

The root of this equation can be solved by a number of numerical methods. It is noted that the first derivative of Eq. (14)
with respect to Nn+1 can be calculated analytically by exact derivation or numerically by finite difference approximation,
providing the tangent for the methods of Newton or Quasi-Newton iteration.
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2.4. Rate of microcrack growth

The model derivation in this subsection follows the formulation of Addessio and Johnson [1] and is here repeated for
completeness of the proposed numerical model. Let us consider a penny-shaped crack shown in Fig. 1 with the unit normal
vector n. Under conditions of normal traction, a crack grows when [25,10]:

F n0 ðrij;�c; niÞ ¼ rijnjriknk �
1

2
m0ðrijninjÞ2 �

K
�c

P 0 ð15Þ

with

K � p
2

2� m0

1� m0

cG0; ð16Þ

where m0, G0 and c are the Poisson’s ratio, shear modulus and crack surface energy, respectively, of the solid.
Similarly, a crack subjected to a shear is unstable when [10]

F t0 ðrij;�c; niÞ ¼ ðrt � rrÞ2 �
K
�c

P 0; ð17Þ

where

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rijnjriknk � ðrijninjÞ2

q
; ð18Þ

rr ¼ r0 � lfðrijninjÞ; ð19Þ

where r0 is the cohesive stress and lf is the coefficient of friction. For a given stress field rij, Eqs. (15) and (17) provide a
critical crack size. All cracks greater than or equal to the critical size grow. Cracks smaller than the critical size remain
stable.

Continuum level representation of crack stability criteria is a damage surface and can be obtained through the following
volume averaging procedure [1]:Z

v

Z
�c

Z
X

F ðrij;�c; niÞwð�c;XÞd�cdXdV P 0; ð20Þ

where w is the crack distribution function and X denotes orientations. Consider applying Eq. (20), with the assumptions of
an exponential crack size distribution, to Eqs. (15) and (17). The resulting damage surface are defined in terms of the scalar
parameters, p and q, defined as
Sc

T
n

V

σ

σ

Fig. 1. Stresses on a crack (see also Fig. 1 of [1]).



122 H.K. Lee, S. Šimunović / Comput. Methods Appl. Mech. Engrg. 196 (2006) 118–133
p ¼ � 1

3
rii; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
qijqij

r
; ð21Þ

where p and q denote the pressure and the deviatoric stress norm, respectively. Two damage surfaces for tension and com-
pression states were derived by Addessio and Johnson [1] using the averaging procedure in Eq. (20). In tension (p < 0),

F nðp; q;�cÞ ¼ q2 þ 45

4ð5� m0Þ
ð2� m0Þp2 � 2K

�c

� �
¼ 0: ð22Þ

In compression (p > 0),

F tðp; q;�cÞ ¼ q2 � 45

2ð3� 2m2
0Þ
ðlf p þ r0Þ lf p þ r0 þ

ffiffiffiffiffiffiffi
pK
�c

r !
þ K

�c

" #
¼ 0: ð23Þ

Fig. 2 is a graphical plot of damage surfaces for a carbon/polyurethane random fiber-reinforced composite in the (p; q;�c)
space. The material properties and parameters of the carbon/polyurethane composite are j0 = 213 GPa, l0 = 187 GPa,
lf = 0.26, c = 10 Pa m, r0 = 0. Within the damage surfaces ½F ðp; q;�cÞ 6 0�, the material is assumed to behave elastically
and no microcracks grow (i.e. existing microcracks are arrested). Outside the damage surfaces ½F ðp; q;�cÞ > 0�, cracks grow
until a state of stress that is within the surface is achieved.

The adopted formula for the rate of crack growth in the present study is [1]

_�c ¼ b _cmax tanhðdsÞ ð24Þ
with

ds ¼ q2 � F d ð25Þ
in which

F d ¼
�45

4ð5� m0Þ
ð2� m0Þp2 � 2K

�c

� �
; p < 0

¼ 45

2ð3� 2m2
0Þ
ðlfp þ r0Þ lfp þ r0 þ

ffiffiffiffiffiffiffi
pK
�c

r !
þ K

�c

" #
; p > 0:

ð26Þ

In Eq. (24), _cmax is the shear wave speed _cmax ¼
ffiffiffiffi
E�

q�

q� �
, in which E* and q* are the effective Young’s modulus and density,

respectively, of the solid. In addition, ds is the measure of the distance the amount by which the state of stress exceeds the
damage surface, and b is the scaling factor for crack speed and is assumed to be constant.

According to the backward Euler method, the following approximations are made for the rate equation for crack
growth:

�cnþ1 ¼ �cn þ bDtnþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�Þnþ1

ðq�Þnþ1

s
tanhðdsÞ; ð27Þ
Fig. 2. A graphical plot of damage surfaces of carbon/polyurethane composites in the (p; q;�c) space.
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where �cnþ1 can be evaluated by finding the root of the following scalar nonlinear equation at time t = tn+1:

gð�cnþ1Þ ¼ �cnþ1 � �cn � bDtnþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�Þnþ1

ðq�Þnþ1

s
tanhðdsÞ: ð28Þ
3. Effective moduli of microcracked brittle composites

Most studies in literature focused on the prediction of the effective moduli of microcracked materials are mainly the
self-consistent method and differential scheme. The self-consistent analysis provided by [5] was focusing on randomly dis-
tributed, weakly interacting microcracks and provides the starting point for most analyses of microcracking in brittle mate-
rials. The self-consistent method was further explored by Hori and Nemat-Nasser [15], Laws et al. [32], Laws and Dvorak
[31], Krajcinovic and Sumarac [28], Ju and Lee [20], etc. On the other hand, differential scheme has a long history. It was
developed and used by Roscoe [41], and later extended by McLaughlin [34], Laws and Dvorak [31], and Hashin [13].

Clearly, it is imperative to construct a general model for the degradation of stiffness resulting from the nucleation and
growth of microcracks in the brittle composites so that one can analyze the effects of density of microcracks in the com-
posites. The overall stiffness tensor C in Eq. (8) of the microcracked brittle composite are estimated using the self-consistent
method and differential scheme, and a completely general derivation of the self-consistent method and differential scheme
for two different crack distributions is formulated in the present study.

3.1. Moduli of a brittle composite containing randomly distributed penny-shaped cracks

The normalized elastic moduli of a brittle composite containing randomly distributed penny-shaped cracks can be sum-
marized as
Self-consistent estimates [5]:

E�

E0

¼ 1� 16

45

½1� ðm�Þ2�ð10� 3m�Þ
ð2� m�Þ x; ð29Þ

G�

G0

¼ 1� 32

45

ð1� m�Þð5� m�Þ
ð2� m�Þ x; ð30Þ

x ¼ 45

16

ðm0 � m�Þð2� m�Þ
½1� ðm�Þ2�½10m0 � m�ð1þ 3m0Þ�

. ð31Þ

Differential scheme estimates [13]:

E�

E0

¼ m�

m0

� �10=9
3� m0

3� m�

� �1=9

; ð32Þ

G�

G0

¼ 1þ m0

1þ m�
E�

E0

; ð33Þ

x ¼ 5

8
ln

m0

m�
þ 15

64
ln

1� m�

1� m0

þ 45

128
ln

1þ m�

1þ m0

þ 5

128
ln

3� m�

3� m0

; ð34Þ
where m0, E0, G0 are the Poisson’s ratio, Young’s modulus, and shear modulus, respectively, of an uncracked composite;
and m*, E*,G* are the effective Poisson’s ratio, Young’s modulus, and shear modulus, respectively, of a cracked composite.
x ¼ N�c3 signifies the crack density parameter. Accordingly, the initial crack density x0 ¼ N 0�c3, where N0 is the initial crack
distribution per unit volume. The Newton iteration method is utilized to obtain the normalized elastic moduli E*/E0, G*/
G0, and m*/m0.

3.2. Moduli of a brittle composite containing aligned penny-shaped cracks

The effective moduli of a brittle composite containing aligned penny-shaped cracks are formulated using the self-con-
sistent method and differential scheme in this subsection.
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3.2.1. Self-consistent estimates

Following Laws and Dvorak [31], the self-consistent estimates for the overall compliance of a cracked composite are
defined as

M ¼M0 þ 4p
3

xK; ð35Þ

where M0 is the compliance of an uncracked composite. Note that the crack density parameter x is not the same as the
crack density parameter a introduced in Laws and Dvorak [31]. In the limit of aligned penny-shaped cracks, the material
is transversely isotropic. The non-zero components of the tensor K for a transversely isotropic material are

K33 ¼
2c1c2ðc1 þ c2Þ

p
M2

11 �M2
12

M11

; ð36Þ

K44 ¼ K55 ¼
4ðc1 þ c2ÞðM2

11 �M2
12Þð2M44Þ1=2

p½M11ð2M44Þ1=2 þ ðc1 þ c2ÞðM11 þM12ÞðM11 �M12Þ1=2�
; ð37Þ

where c2
1 and c2

2 are the roots of

ðM2
11 �M2

12Þx2 � ½M11M44 þ 2M13ðM11 �M12Þ�xþM11M33 �M2
13 ¼ 0: ð38Þ

Since the non-zero components of tensor K are K33 and K44 (=K55), it follows:

Mij ¼ M0
ij; if Mij 6¼ M33;M44;M55: ð39Þ

Hence,

K33 ¼
2c1c2ðc1 þ c2Þ

p
1� m2

0

E0

; ð40Þ

K44 ¼
4ðc1 þ c2Þð1� m2

0Þð2M44Þ1=2

pE0½ð2M44Þ1=2 þ ðc1 þ c2Þð1� m0Þð1þ m0Þ1=2E�1=2
0 �

; ð41Þ

where

c1c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s
; ð42Þ

c1 þ c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M44 � 2m0ð1þ m0Þ

1� m2
0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

svuut : ð43Þ

By combining Eqs. (35) and (40)–(43), we arrive at

M33 ¼
1

E0

þ 8

3
x

1� m2
0

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut ; ð44Þ

M44 ¼
2ð1þ m0Þ

E0

þ 16

3
x

1� m2
0

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M44

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut
ffiffiffiffiffiffiffiffiffiffiffi
2M44

p
þ ð1� m0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m0Þ

E0

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut
: ð45Þ

Consequently, M33 and M44 can be evaluated by defining the following system of scalar nonlinear equations F s
1 and F s

2:

F s
1ðM33Þ ¼ M33 �

1

E0

� 8

3
x

1� m2
0

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut ; ð46Þ

F s
2ðM44Þ ¼ M44 �

2ð1þ m0Þ
E0

� 16

3
x

1� m2
0

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M44

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut
ffiffiffiffiffiffiffiffiffiffiffi
2M44

p
þ ð1� m0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m0Þ

E0

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut
; ð47Þ
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where the roots M33 and M44 of the system of equations can be solved by a number of numerical methods. The Newton-
iteration method can be used to obtain M33 and M44.

3.2.2. Differential scheme estimates

Following Laws and Dvorak [31], the differential scheme estimates for the overall compliance of a brittle composite con-
taining aligned penny-shaped cracks are obtained as

dM

dx
¼ 4

3
pK: ð48Þ

The only components of the compliance tensor M which are changed by the introduction of aligned penny-shaped cracks
are M33, M44, and M55, where M44 = M55. Thus, the equations of the differential scheme model are

dM33

dx
¼ 4

3
pK33; ð49Þ

dM44

dx
¼ 4

3
pK44; ð50Þ

where K33 and K44 are given in Eqs. (40) and (41), respectively.
By substituting Eqs. (40) and (41) into Eqs. (49) and (50), we obtain the system of (first order) ordinary differential

equations:

dM33

dx
¼ 8

3

1� m2
0

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut � F d
1ðx;M33;M44Þ; ð51Þ

dM44

dx
¼ 16

3

1� m2
0

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M44

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut
ffiffiffiffiffiffiffiffiffiffiffi
2M44

p
þ ð1� m0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m0Þ

E0

E0M44 � 2m0ð1þ m0Þ
1� m2

0

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0M33 � m2

0

1� m2
0

s" #vuut
� F d

2ðx;M33;M44Þ ð52Þ

with the initial conditions M33ð0Þ ¼ M0
33 ¼ 1

E0
and M44ð0Þ ¼ M0

44 ¼
2ð1þm0Þ

E0
.

We now turn to the problem of dealing with the system of ordinary differential equations. Since the differential equations
in Eqs. (51) and (52) cannot be solved analytically, we resort to the numerical solution. The system of ordinary differential
equations in Eqs. (51) and (52) can be rephrased as a basic problem (replacing the subscripts 33 and 44 with 1 and 2,
respectively):

dMi

dx
¼ F d

i ðx;M1;M2Þ; i ¼ 1; 2 ð53Þ

subject to the initial conditions

Mið0Þ ¼ M0
i ; i ¼ 1; 2: ð54Þ

The Runge–Kutta method is used to solve the basic problem (53).
Finally, the stiffness matrix of the brittle composite containing aligned penny-shaped cracks can be obtained by replac-

ing the components M0
33 and M0

44 with the roots M33 and M44 of Eqs. (46) and (47) or Eqs. (51) and (52), in conjunction
with the inverse of generalized Hook’s law. The final expression takes the form

C¼E0

�E0M33þ m2
0

ð1þ m0Þ½E0M33ðm0�1Þþ2m2
0�
� m0ðE0M33þ m0Þ
ð1þ m0Þ½E0M33ðm0�1Þþ2m2

0�
� m0

E0M33ðm0�1Þþ2m2
0

0 0 0

� m0ðE0M33þ m0Þ
ð1þ m0Þ½E0M33ðm0�1Þþ2m2

0�
�E0M33þm2

0

ð1þ m0Þ½E0M33ðm0�1Þþ2m2
0�
� m0

E0M33ðm0�1Þþ2m2
0

0 0 0

� m0

E0M33ðm0�1Þþ2m2
0

� m0

E0M33ðm0�1Þþ2m2
0

m0�1

E0M33ðm0�1Þþ2m2
0

0 0 0

0 0 0
1

E0M44

0 0

0 0 0 0
1

E0M44

0

0 0 0 0 0 1

2ð1þ m0Þ

2
666666666666666666664

3
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: ð55Þ
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The stiffness matrix in Eq. (55) shows that the brittle composite containing aligned penny-shaped cracks is transversely
isotropic.

Predictions of longitudinal compliance M33 of a random fiber-reinforced composite with aligned penny-shaped cracks
using the two methods, self-consistent method and differential scheme, are shown in Fig. 3 to exhibit the difference of the
nature of two different formulations. Data for the uncracked composite with volume fractions cf = 0.2, 0.4, 0.6 are taken
from Table 2 of Dvorak et al. [11]. It is noted that the longitudinal compliance M33 obtained by differential scheme is lower
than that by self-consistent method.
4. Numerical simulations

The proposed constitutive model is implemented into the FE codes DYNA3D and ABAQUS to predict the constitutive
behavior and crack evolution in brittle composites. The constitutive model is portable to both commercial (ABAQUS) and
publicly available (DYNA3D) FE codes. Iterative computational algorithms accounting for the crack nucleation and
growth in brittle composites explained in Fig. 2(b) and (c) of Lee et al. [33] are utilized to combine damage mechanisms
into the constitutive relation. The implemented computational model is then applied to through a benchmark problem,
one (finite) element test on random, fiber-reinforced composites, to illustrate the characteristics of the model.

The one-element test is commonly used as a benchmark for determining the global characteristics of a material model.
The schematics of the test can be found in Lee et al. [33]. The ratio of thickness, width, and length of the composite spec-
imen is 1:10:100. The prescribed velocity v(t) imposed on the top of the specimen is related to the rate of strain as follows:

vðtÞ ¼ _�L ¼ _�L0 � expð_�tÞ; ð56Þ
where L0 and L denote the heights of the original and deformed specimens, respectively. The material properties of the
composite used in this simulation are: q = 3177 kg/m3, j = 213 GPa, l = 187 GPa, c = 10.0 Pa m, rn0 = 1.0 · 1010 N/
m2, _N 0 ¼ 1:0� 1011=s=m3, and r1 = 2.0 · 109 N/m2. These values are chosen from a combination of experimental results
from the literature and do not correspond to a specific composite.

To illustrate the crack evolution and strain softening behavior of the composite, the predicted stress–strain curve and
corresponding evolutions of the number of cracks per unit volume and the mean crack size are shown in Figs. 4 and 5,
respectively. It is observed from Fig. 5 that the number of cracks per unit volume remains constant within the initial stage
of loading, begins to increase rapidly at the lower threshold value of strain up to the upper threshold value of strain, and
then remains constant again even at the deep strain range, while the mean crack size remains constant up to the threshold
strain but, after that point, it suddenly begins to increase until the compressed specimen reaches its ultimate strength. It is
concluded from this numerical simulation that the crack growth mechanism mainly influences the softening behavior of the
brittle composites.

The effects of strain rate of applied loading on the crack evolution and constitutive behavior of the composite are ana-
lyzed. The predicted stress–strain curves and corresponding evolutions of the crack size as a function of the uniaxial strain
with strain rates of 0.1/s, 20/s, 50/s are shown in Figs. 6 and 7, respectively. It is seen from Fig. 6 that the strain rate affects
the onset point of the nonlinear stress–strain curve and the maximum stress the material can sustain, and controls the rate
of crack growth. In Fig. 7, it is observed that cracks grow more rapidly as the strain rate decreases.
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5. Experimental comparison

To verify the present framework, the present predictions are compared with some available experimental data. First, we
compare the present prediction with experimental data provided by Meraghni and Benzeggagh [36] for three-dimensional
random, fiber-reinforced composites. Here, we adopt the material properties according to Meraghni and Benzeggagh [36]
as follows: j = 14.02 GPa, l = 6.28 GPa, q = 1403 kg/m3.

Using the parameter estimation algorithm developed by Simo et al. [47], we estimate the crack nucleation and growth
parameters to be _N 0 ¼ 1:5� 1014=s=m3, rn0 = 0.5 · 107 N/m2, r1 = 1.0 · 107 N/m2; �c ¼ 0:1� 10�4, N0 = 1.0 · 1011/m3,
lf = 0.26, c = 10.0 Pa m, b = 0.5 · 10�5. Based on the above material properties and parameters, we depict the present pre-
diction against three experimental data provided by Meraghni and Benzeggagh [36] in Fig. 8. It is observed from the figure
that the stress–strain curve for the present prediction is well within the experimentally obtained curves. Fig. 9 exhibits the
evolution of the number of cracks per unit volume versus uniaxial strain corresponding to Fig. 8. As the strain increases,
the present prediction exhibits nonlinear response even in early stage due to crack nucleation as shown in Fig. 8. Fig. 10
exhibits the normalized effective Young’s modulus as a function of the crack density. Since we assume the two damage
processes, crack nucleation and crack growth, to be occurred sequentially and independently, only the crack nucleation
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is modeled as an active damage mechanism within the small strain range. Accordingly, the normalized effective Young’s
modulus from the present prediction is shown to be slightly higher than that based on the experiment in the figure.

We further compare the present prediction with experimental data on brittle ceramic matrix composites reported by Sta-
wovy et al. [48] to further convince the predictive capability of the proposed model. The same material properties for the m-
cordierite ceramic matrix composites are employed in this simulation according to Stawovy et al. [48] as follows:
Em = 130 GPa, /m = 0.6; Ef = 200 GPa, /f = 0.4, where the subscripts m and f denote the matrix and fibers, respectively.
The overall Young’s modulus of the composites is estimated simply by a rule of mixtures as follows:
E = Em/m + Ef/f = 158 GPa. The typical values of Poisson’s ratio and density of the ceramic matrix composites
(m = 0.24, q = 2100 kg/m3) are used in this simulation. Parameter estimation procedures [47] adopted from the above
experimental comparison are not applicable to this experimental comparison due to the lack of experimental data reported
by Stawovy et al. [48]. Instead, the crack nucleation and growth parameters are estimated using the trial-and-error method
to be _N 0 ¼ 1:5� 1014=s=m3, rn0 = 0.5 · 107 N/m2, r1 = 1.0 · 107 N/m2; �c ¼ 0:1� 10�4, N0 = 1.45 · 1014/m3, lf = 0.26,
c = 0.8 Pa m, b = 0.1 · 10�6. Based on the above material properties and parameters, we depict the present prediction
against experimental data provided by Stawovy et al. [48] in Fig. 11. We observe from the figure that the stress–strain curve
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for the present prediction is well within the two experimental data. It is also found during this simulation that the effect of
microcrack nucleation on the stress–strain response of the composites is negligible and microcracks start to grow even in
early stage during the uniaxial tension. The evolution of the crack size versus strain is plotted in Fig. 12. Fig. 13 shows the
sequence of deformed shape and von Mises effective stress of the composite specimen during the uniaxial tension.

6. Concluding remarks

A constitutive model was developed based on a combination of a fracture-mechanics based model and micromechanical
formulations for simulation of the effective mechanical properties and crack evolution in damage-tolerant brittle compos-
ites. The fracture-mechanics based model employed Seaman et al. [45] and Addessio and Johnson’s [1] rate equations for



Fig. 13. The sequence of deformed shape and von Mises effective stress during the uniaxial tension.
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evolving microstructure. Effective mechanical properties of microcracked brittle composites containing different crack dis-
tributions were modeled using the self-consistent method and differential scheme. The Newton-iteration method were used
to estimate the effective moduli of the composites.

The constitutive model was implemented into the finite element codes DYNA3D and ABAQUS to simulate the consti-
tutive behavior and crack evolution of brittle composites. The capability of the present computational damage approaches
to model progressive deterioration of effective stiffness, crack evolution and softening behavior of the damage tolerant brit-
tle composites was shown systematically from the benchmark one-element numerical test on the coupon under compres-
sion and tension. The effects of strain rate of applied loading on the crack evolution and constitutive behavior of the
composites were also analyzed from the benchmark test. Finally, to verify the present framework, we compared the present
predictions with experimental data provided by Meraghni and Benzeggagh [36] and Stawovy et al. [48] for three-dimen-
sional brittle composites. The good agreement between the present prediction and experiments is encouraging for possible
use of the proposed methodology to predict the effective mechanical properties and crack evolution in damage-tolerant
brittle composites.

However, investigations on determining the model parameters and further simulations of the brittle composites under
loading paths other than a uniaxial loading (e.g., shear, multi-axial state, cyclic loading, etc.) are needed to realistically
assess the performance of the proposed computational model and methodology.
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