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Abstract

A micromechanical approach recently proposed by Lee and Simunovic [Compos. Part B: Engng. 31 (2000) 77] is introduced to develop
analytical and numerical models that efficiently predict the behavior of chopped fiber based composites containing microcracks under impact
loading. Based on the ensemble-volume averaging process and the first-order effects of eigenstrains due to the existence of chopped fibers
and microcracks, an effective yield criterion of the composites is derived. Microcracks in the matrix are considered by employing the
Eshelby’s equivalence principle and their influence on the stress—strain relations of the composites is investigated. Further, the Weibull’s
probabilistic function is used to model the varying probability of progressive partial fiber debonding. The developed micromechanical
constitutive model is then implemented into the finite element code DYNA3D to perform impact simulation of the composites. Finally,
numerical simulations for cantilever beam test and composite contact test are carried out to validate the finite element implementation and
predict the impact behavior of composite structures. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

The goal of automotive engineers today is to provide
lightweight, more fuel-efficient automobiles capable of
greater crashworthiness. In the crashworthiness of automo-
tive structures, the primary issues are the overall economy
and the weight of the material. To reduce the weight and
improve the fuel economy, fiber-reinforced polymer
composites have replaced more and more metal parts in
vehicles. Carbon fiber composites, which are new breed of
high-strength materials, have attracted worldwide attention
and hold great promise due to their attributes of high
strength-to-weight and stiffness-to-weight ratios, corrosion
resistance and fatigue resistance. In comparison to metals,
carbon fibers are generally characterized by a brittle
rather than ductile response to the applied loads, especially
in compression. Thus, they are used in composites with a
lightweight matrix. Recently, the automotive industry
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has been interested in investigating the use of carbon
and glass fibers in chopped fiber-reinforced composites
that are generally considered to have the potential to
satisfy today’s requirements as well as or better than other
materials.

The major difference, however, is that metal structures
collapse under crush or impact by buckling and/or folding in
accordion type fashion involving extensive plastic deforma-
tion, whereas chopped fiber composites fail through a
sequence of fracture mechanisms. The actual mechanisms
(e.g. matrix cracking, fiber—matrix debonding, and
sequence of damage) are highly dependent on fiber length,
tow size, crush speed, triggers and geometry of the structure.
Experimental investigations of fiber-reinforced tubes and
cones indicate a wide range of material damage such as
matrix crushing, fiber—matrix debonding, and fiber break-
age. The first two types of failure often show a rather slowly
progressing failure with high-energy dissipation, while the
last failure type might initiate a catastrophic collapse of the
entire structure with little dissipation of kinetic energy. It is
noted that the microscopic failure behavior of the compo-
sites is still not completely understood. Nevertheless,
several attempts towards the simulation of a composite
crash have been made [2—-4]. A more detailed review of
failure in fiber-reinforced composites can be seen in studies
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by Matzenmiller and Schweizerhof [2], Kutlu and Chang
[5], and Meraghni and Benzeggagh [6].

While there is substantial research in the aerospace
community on graphite—fiber laminated composites, there
is very little information pertaining to the response of
carbon fiber composites during automotive impact-induced
crash loading conditions. Currently, the predictive analyti-
cal and numerical tools required to accurately evaluate and
design carbon fiber automotive structures for crush do not
exist. In order to successfully develop these predictive tools,
a micromechanical damage constitutive model for chopped
fiber-reinforced composites is developed. This work focuses
specifically on development of analytical and numerical
models that efficiently predict the behavior of chopped
fiber based composites in vehicular impact simulations.

In our derivation, chopped fibers are assumed to be elastic
(prolate) spheroids that are randomly oriented in a ductile
polymer matrix. Penny-shaped microcracks are regarded as
the limiting case of oblate spheroidal voids and are assumed
to retain the uniform size and the same volume fraction
during the deformations. However, it is possible to extend
the proposed model to accommodate cracks with different
size and orientation in the matrix by adding the correspond-
ing inclusion phases. The Weibull’s probabilistic function is
used to model the varying probability of progressive partial
fiber debonding. It is also assumed that after the interfacial
debonding between the fibers and the matrix, these partially
debonded fibers are replaced by equivalent, transversely
isotropic inclusions. Only dilute or moderate fiber
reinforced composites will be considered here.

The damage constitutive model is then implemented into
the open source finite element code DYNA3D to perform
the impact simulation of the composites. Finally, numerical
simulations for cantilever beam test and composite contact
test are carried out to validate the finite element implemen-
tation and compare with experimental data.

2. Overall elastoplastic behavior of crack-weakened,
chopped fiber composites

2.1. Effective elastic moduli of crack-weakened, chopped
fiber composites

First, an initially perfectly bonded, three-phase composite
consisting of a matrix (phase 0) with bulk modulus k, and
shear modulus pw(; aligned discontinuous, randomly
dispersed, (prolate) spheroidal fibers (phase 1) with bulk
modulus «; and shear modulus w;; and aligned penny-
shaped microcracks (phase 2) is considered. When spheroidal
inclusions (discontinuous fibers and penny-shaped micro-
cracks) are aligned, the composite as a whole is transversely
isotropic. Subsequently, as loadings or deformations are
applied, some fibers are partially debonded (phase 3).
These partially debonded fibers are regarded as equivalent,
transversely isotropic inclusions. Following Zhao and Weng

[7,8] and Ju and Lee [9], a partially debonded fiber can be
replaced by an equivalent, perfectly bonded fiber that
possesses yet unknown transversely isotropic moduli.
Penny-shaped microcracks are assumed to remain the
uniform size and the same microcrack density during the
deformations.

Based on Ju and Chen’s [10] governing field equations for
linear elastic composites containing arbitrarily nonaligned
and/or dissimilar ellipsoidal inclusions, the effective elastic
stiffness tensor C. for aligned, crack-weakened, chopped
fiber composites were derived by Lee [11] as

C* = Fijkl(Tl s 72,73, T4, Ts, 76) (1)

where the definition of fourth-rank tensor F is given in
Eq. (2) of Lee and Simunovic [1] and the inverse and
product of a fourth-rank tensor F are given in the appendix
of Ju and Chen [12]. The components 7,..., 7 are also
given in the appendix of Lee [11].

Assuming all fibers and microcracks in the composite
changed from aligned array to three-dimensional random
array, the effective elastic moduli of (randomly oriented)
chopped fiber composites can be obtained by applying the
orientational averaging process proposed by Lee and
Simunovic [1]. Assuming the uniform distribution of overall
strains, the effective elastic stiffness tensor C C.D in
Eq. (1) is averaged over all orientations as

1 T
C C* o= ﬁ JO JO lmilnj(c*)mnpqlpqu/ sin 0 d6 d¢

= 618,04 T €2(0y8; + 0;8y) 2
with
1
(51 == E[’Tl + 5(7'3 + Ty + 3’7’5)] (3)
1
(62 = 1—5[71 + 107'2 + 1576] (4)

where [;; signifies the directional cosine between ith primed
and jth unprimed axes.

2.2. Effective elastoplastic behavior of crack-weakened,
chopped fiber composites

Let us consider the overall elastoplastic responses of
aligned, crack-weakened, chopped fiber composites that
initially feature perfect interfacial bonding between fibers
and the matrix in three-phase composites. For simplicity, the
von Mises yield criterion with isotropic hardening law is
assumed here.

Following Lee and Simunovic [13], we denote the square
of the ‘current stress norm’ by H(x|%}) at the local point x,
which determines the plastic strain in a composite for a
given phase configuration %. Since there is no plastic
strain in the elastic perfectly bonded fibers, partially
debonded fibers, or penny-shaped microcracks, H(x|%) can
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be written as

{0‘(x|§) 1y o(x]9),
H(x|9) =

, otherwise.

if x in the matrix;

where I, signifies the deviatoric part of the fourth-rank
identity tensor L.

In addition, (H),(x) is defined as the ensemble average of
H(X|€4) over all possible realizations where X is in the matrix
phase. Here, the angled bracket (-) signifies the ensemble
average operator. Let P(%9,) be the probability density
function for finding the g-phase (¢ = 1,2, 3) configuration
%, in the composite. (H)n(x) can be obtained by integrating
H over all possible perfectly bonded fibers, partially
debonded fibers, and penny-shaped microcracks configura-
tions (for a point X in the matrix)

(Hym(x) = H® + j@ (H(X[%,) — HO)P(%,) d%

+ j (H(|%,) — HO)P(%,) 4%
+ L (H(|%,) — HO)P(%3) 4% ©)

where H° is the square of the far-field stress norm in the
matrix:

H =c¢°:1;:06° @)

in which o® denotes the far-field stress.

As indicated, a matrix point receives the perturbations
from perfectly bonded fibers, partially debonded fibers,
and penny-shaped microcracks. Therefore, the ensemble-
average stress norm for any matrix point X can be evaluated
by collecting and summing up all the current stress norm
perturbations produced by any typical perfectly bonded
fiber centered at x}” in the perfectly bonded fiber domain;
any typical penny-shaped microcrack centered at x(l) in the
penny-shaped microcrack domain; and any typical partially
debonded fiber centered at Xgl) in the partially debonded
fiber domain; and averaging over all possible locations of

P, xM ). As a result, we arrive at

x, x" and x{

(H)m() = H Jm%ﬁ(x) H(xx{") = m°}p(x(V)ax"
g F27) = (s
Jen ) - (st

+... ®)

where Z/(x) is the exclusion zone and P(x(l)) P(x(])) and
P(x; () denote the probability density functions for finding a
perfectly bonded fiber centered at x( ) a penny-shaped
microcrack centered at x ,and a partlally debonded fiber

centered at x( ), respectively. Here, P(Xll)) P(x(l)) and

P(x3 ) are assumed to be statistically homogeneous, isotro-
pic, and uniform for simplicity. That is, we assume that the
probability density functions take the form P(x(ll)) =N,/V,
P(x(21)) = N,/V and P(xgl)) = N3/V, where N, N,, and N; are
the total numbers of perfectly bonded fibers, penny-shaped
microcracks, and partially debonded fibers, respectively,
dispersed in a representative volume V. Accordingly, the
volume fraction of the rth phase inclusion can be defined
as ¢, = (Aw/3)(N,/V)a.

By dropping higher order terms, the integral on the right-
hand side of Eq. (8) can be evaluated and we arrive at the
ensemble-averaged current stress norm at any matrix point:

Hyyx)=c¢°:T:c° 9)

The components of the positive definite fourth-rank tensor T
read

Tiws = Fiju(n1, m2. M3, M4s M5, M) (10)

where the six parameters on the right-hand side take the
form

m=®Py — Py — Dy + Dy, +2V¥; + 2V, — 4V,
m=-Y+ ¥

M3 = Py — P

My = Py — D3

M5 = D3

M = ¥ (11)

in which the parameters @; and @; are given in Appendix
A.

We now consider the overall elastoplastic responses of
crack-weakened, (randomly oriented) chopped fiber compo-
sites in three-dimensional space. By applying the orienta-
tional averaging process to Eq. (9), the orientation-averaged
square of stress norm C H,, D at any matrix point can be
obtained as

CH,D>=0¢°:CTD: ¢’ (12)

where the isotropic fourth-rank tensor C T D is

ljkl J' J lmllanmnpq pqul sin 6d6 d¢ (13)

The components of the positive definite fourth-rank tensor
CTD read

C Tijiy O= 11604 + N2(8y8; + 8:18z) (14)
with

_ 1

M = =[m + 5(n3 + 4 + 3m5)] (15)

15
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1
Ny = E[m + 107, + 15m4] (16)

where the parameters 7y, ..., ¢ are given in Eq. (11).

The ensemble-averaged current stress norm at a matrix
point can also be expressed in terms of the macroscopic
stress . Following Ju and Chen [10], the relation between
the far-field stress ¢ © and the macroscopic stress @ takes the
form

¢c’=P: ¢ (17)

where the fourth-rank tensor P reads

3 -1
P= [I + > A -84, + sw]
r=1

= Fiu(q1. 9293, 94. 95, 96) (18)

and the components ¢, ..., gg are

:%11_%12_%21+%22+2j1+2j2_4=f3
G =—I,+ I3
=Wy =Hp

qs = H1a — Ao

qs = A'x3
96 = I (19)
with
i ..
= — =1,2 2
Hjj 2 (i,j=1,2,3) (20)
- (i=1,2,3) Q1
S = 4}{/[ 1= 1,2,
where
I = (Lt A DLn —Lnn
YL A2 NLo + H )~ L1y
(i=1,2,3) 22)
Fo=F5= (L +2H4)Lp — LZy
2T IR T WL AN Loy + A ) — 280D
(i=1,273) 23)
3 —
o= + Z (1 —2(%,)ilé:
= 2077

(Wr)nj(&_{r)in _ (&_ir)ij
(Vr)n (n/r)]

3 3
X
r=1 n=1
(1= 2By,
(,Vr)i

i,j=1,2,3) (25)

in which the parameters (%,);, (7 )i, (W) (J_%,)ij, (@,)U
are given in Appendix A.

By applying the orientational averaging process to Eq. (18),
the orientation-averaged square of stress norm C H, D at
any matrix point can be obtained as

c°=CPD:CadD (26)

where the fourth-rank tensor C P D reads

C Py 2= §18;;0u + §2(0x 8 + 6;83) (27)
with

. 1

@ = 15191 +5(g5 + g4 + 3g5)] (28)
. 1

G = E[QI + 10g; + 15¢5] (29)
where the parameters ¢, ..., gq are given in Eq. (19).

By combining Eqgs. (12) and (26), we arrive at the alter-
native expression for the orientation-averaged current stress
norm (square) at a matrix point:

CH,D>=Cé¢D2:CTD:CaD (30)
where
cTo=cpP>T.cTo>.CcPD

(€29)

= T80y + T(5;8; + 8;84)

with
Ty =134 + 251 + 241m(3G) + 44> 32)
Ty = 4[g, 177, (33)

The ensemble-volume averaged ‘current stress norm’ for
any point X in three-dimensional random fiber composites
can be defined as

VH)(x) = (1 — ¢,

where ¢; and ¢, are volume fractions of the current
perfectly bonded fibers and penny-shaped microcracks,
respectively. Therefore, the effective yield function for the
four-phase, three-dimensional random fiber composites can
be proposed as

F:(l_d)l

with the isotropic hardening function K(e?) for the four-
phase composite. The effective ensemble-volume averaged

—pWCcadcTdCceDd (34

— ¢’ C ¢ 2:CTD:CéD—K*@") (35)



H.K. Lee, S. Simunovic / Composites: Part B 33 (2002) 25-34 29

plastic strain rate for the three-dimensional random fiber
composites can be expressed as

. . OF .-
& = %:2(1—¢1—¢2)2/\ CcTD>CéD (36)

where A signifies the plastic consistency parameter.
The effective equivalent plastic strain rate for the compo-
site is defined as

. 2., = .
é”E\/gé”CTD—‘:é”

=2(1—¢, — ¢2)2/\'\/§ CeD:CTD:Cé6D (37

The A together with the yield function F must obey the
Kuhn-Tucker loading/unloading conditions. The simple
power-law type isotropic hardening function is employed
as an example:

K" = \/g {oy + h@")7} (38)

where oy is the initial yield stress, and & and g signify the
linear and exponential isotropic hardening parameters
(respectively) for the four-phase composite.

2.3. Progressive fiber debonding

The evolutionary interfacial debonding occurs under
increasing loads or deformations and influences the overall
behavior of crack-weakened, chopped fiber composites.
After the interfacial debonding, the debonded fibers lose
the load-carrying capacity along the debonded direction
and are regarded as partially debonded fibers. Following
Zhao and Weng [7,8] and Ju and Lee [9], the probability
of partial debonding is modeled as a two-parameter Weibull
process. Assuming that the Weibull statistics govern, the
cumulative probability distribution function of fiber debond-
ing (damage) P, at the level of hydrostatic tensile stress
(6°n); can be expressed as

= M
Pyl =1— eXp[—<@) ] (39)
So
with (6,); = (1 — (2/3)v))(6 ), Where v, denotes the
Poissson’s ratio of the fibers and (), is the average
hydrostatic tensile stress of the fibers. Constants S, and M

are the Weibull parameters.
Therefore, the current partially debonded (damaged) fiber
volume fraction ¢, at a given level of (6,); is given by

br = GPAI(G ), = qs{l - exp[—( (‘2‘:)1 )M]} (40)

where ¢ is the original fiber volume fraction.

The formulation for the internal stresses of fibers needed
to initiate interfacial debonding can be found in Lee and
Simunovic [13]; see Eqgs. (75)—(89) therein.

3. Finite element implementation

To describe the various phenomena taking place
during impact, it is necessary to characterize the beha-
vior of materials under impact loading conditions. The
characterization involves not only the stress—strain
response at large strains and different strain rates, but
also the accumulation of damage and the mode of fail-
ure. Such complex material damage behavior under
dynamic loading is difficult to describe in analytical
models. In numerical simulations, constitutive models
of nearly any degree of complexity can be incorporated
into the code. Therefore, the constitutive models derived
are implemented into the nonlinear finite element code
using a user-defined material subroutine to simulate the
dynamic in-elastic behavior and the progressive damage
of the composite materials. While the implicit integration
is chosen with an automatic time increment because it is
not restricted to mildly nonlinear deformations or short
response times, the explicit method is computationally
attractive when the response time of interest is within
an order of magnitude of the time it takes for a stress
wave to travel through the shell thickness. Accordingly,
the developed damage models are implemented into the
explicit finite element code DYNA3D for impact simula-
tions that require a very small time step.

The methodology used in this work is based on the
well-known strain-driven algorithm in which the stress
history is to be uniquely determined by the given strain
history, mainly because of its computational efficiency in
the framework of the explicit time integration computer
program DYNA3D. The two-step operator splitting
methodology is also adopted here to split the elastoplas-
tic loading process into the elastic predictor and the
plastic corrector. More detailed information for strain
driven algorithms, micromechanical iterative algorithms
for the progressive damage models, and three-dimen-
sional return mapping algorithms can be found in our
previous research [14]. The implemented model is
applicable for shell and solid elements in three-dimen-
sional analysis, as well as axisymmetric elements in two-
dimensional analysis. The main advantage of this model
compared with most computational damage models is
that the damage evolution, giving material degradation,
is fully coupled with the constitutive equation by incor-
porating probabilistic micromechanics appropriate to the
constitutive models.

4. Numerical examples

4.1. Effects of microcracks on the stress—strain behavior of
composites

In the first numerical example, the proposed damage
model is exercised numerically for a chopped glass fiber
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Fig. 1. Effects of microcracks on the stress—strain behavior of composites.

epoxy resin composite to investigate the effects of
microcracks in the matrix on the stress—strain behavior
composites. The material properties, aspect ratio of
fibers, and Weibull parameters involving this simulation
are: Ey = 3 GPa, vy = 0.35, E; = 72 GPa, v; = 0.17, o, =
125 MPa, h = 400 MPa, g = 0.5, a =5, S; = 3406 MPa,
and M = 250. Fig. 1 exhibits the predicted stress—strain
responses of crack-weakened composites with various
crack densities and shows that the composite with low
microcrack density is stiffer. It is noted from the numerical
simulation that the stress—strain behavior of the composites
is strongly dependent upon the microcrack density of the
composites.

4.2. The cantilever beam test

The damage constitutive behavior of a cantilever beam is
examined in numerical experiment. In the computation, the
beam is fully clamped at the support and is subjected to a

05 r .

04 L .

03 r r —— element at fixed edge 1

- element at free edge ]
02+ :

damage index (¢,)

0.1 7]
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time (sec)

Fig. 2. Damage index of elements at free and fixed edges during impact.
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Fig. 3. Displacement in the z-direction at the free edge during impact.

force of 100 N in the z-direction at the free edge. The beam
is 1000 mm in length; 100 mm in width; and 10 mm in
thickness and is modeled by 10 Belytschko—Tsay shell
elements. The calculation ends at 0.5s. We employ the
same material parameters for the composite beam as those
used in Section 4.1. Here, the Weibull parameters for inter-
facial debonding and the initial volume fraction of fibers are
chosen to be: S, = 3125 MPa, M = 4, and ¢; = 0.3.

We exhibit the time-history plots for the damage index
representing the volume fraction of damaged fibers during
impact in Fig. 2. One may observe that the damage
evolution at fixed edge is much quicker than that at free
edge. Fig. 3 shows the displacement in the z-direction at
the free edge indicating vibration relative to the equilibrium
position under impact, which corresponds with the
published results of LS-DYNA finite element simulations
[15]. The simulation can be used for the identification of
model characteristics for solving the boundary value
problems.

AN

NN

KRoller ways

J-Specimen

AN

NN

X
N

Roller

Contact profile plate /

Fig. 4. Model problem: the composite contact test.
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Fig. 5. von-Mises effective stress and deformation sequence of the compo-
site plate.

4.3. The composite contact test

The experimental studies to characterize basic damage
mechanisms and crashworthiness of chopped fiber compo-
sites have until now been limited in the literature. One such
preliminary experimental study on chopped fiber compo-
sites was made by Starbuck et al. [16,17]. They developed
an experimental set up for composite contact test and will
conduct the test to investigate the dominant damage
mechanisms that occurs during the progressive crushing of
chopped carbon fiber composites.

Preliminary numerical simulations for the composite

0.6 T T T T

0.3 B

02 N

Damage index (¢,)

0.1 B

0.0 A L L
0.0 0.2 0.4 0.6 0.8 1.0

Time (msec)

Fig. 6. A time history plot of the damage index at the top of the composite
specimen.

contact test are carried out to quantify the energy
absorption and predict the damage evolution in the
composites during the progressive crushing. In the
computational model of the composite contact test as
shown in Fig. 4, roller ways are modeled to reduce
the unsupported length of specimen thereby preventing
the specimen from buckling or folding and the roller at
the bottom of the contact profile plate is used to provide
a method of constraining the specimen to deform along
the path of the constraint profile. In DYNA3D program,
we specify roller ways, contact profile plate, and roller
as the master rigid surface and the set of nodes on the
composite specimen as the slave contact node set. The
nodes at the top of the composite specimen are given at
an initial velocity of 10 m/s in the negative direction.
The default DYNA3D shell element formulation based
on Belyschko—Tsay theory is utilized for modeling the
composite specimen. We employ the same elastic properties,
volume fraction and aspect ratio of fibers according to
Starbuck et al. [17] as follows: E, = 3 GPa, 1, = 0.35,
E; = 1000 GPa, v; =0.17, ¢; =03, a=>5. Since the
plastic parameters oy, 1 and § were not reported in Starbuck
et al. [16], we choose the plastic and Weibull parameters to
be: oy = 125 MPa, h = 400 MPa, g = 0.5, S, = 3406 MPa,
and M = 250.

From a sequence of intermediate numerical results
displayed in Fig. 5, one can observe apparently specimen
buckling between the contact plate profile and the roller.
The roller ways are successful in preventing out-of-plane
buckling in the carbon fiber composite specimen. A time
history of the predicted damage index at the top of the speci-
men is plotted in Fig. 6. Fig. 7 shows a load—displacement
trace at a node with prescribed velocity. The area under the
load—displacement curve in Fig. 7 is the total energy
absorption of the composite specimen. Further numerical
simulations for the composite contact test with different
profile radius, material property variables, and constraint
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Fig. 7. A load—displacement trace at a node with prescribed velocity.

condition will be performed to meet the test conditions
and compare with the test results that will be provided by
Starbuck et al. [17].

5. Concluding remarks

A damage mechanics model of chopped fiber composites
has been developed for predicting the damage constitutive
behavior of the composites. Based on the statistically and
micromechanically derived local stress norm, an effective
yield criterion with isotropic hardening is constructed. The
Weibull’s probabilistic function is used to model the
varying probability of progressive partial fiber debonding.
The model is further extended to accommodate the effect of
microcracks in the matrix. Finally, for practical applications
of the proposed damage model on solving boundary value
problems of composite materials under impact loading, the
model is implemented into the finite element code
DYNA3D. Numerical experiments for cantilever beam
test and composite contact test are performed to assess the
capability of the implemented model.

The model will be extended to accommodate the
necessary failure mechanisms under impact. Moreover,
further assessment and experimental model validation
such as nondestructive testing for the proposed damage
mechanics model will be conducted to solve crush problems
encountered in practical engineering applications.
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Appendix A. Parameters @; and ¥; in Eq. (11)

These parameters are given by

1 2,
Pi= 3t 2 s w0,

r=1

x{1575(1 - ZVQ)z(W‘r)ii(Wr)ji

+2125vy — 23)(1 = 2wp)[(W)u(U ); + (W)U )i

+21@25v = 2)(1 = 2v)[(W")i(W )5

+3 (35;% — 70w, + 36)(@,),, + 7(501% — 59y, + s)

X[(,); + (U,);) ~ 2(1751/3 — 343y, + 103)}

(i.j=12)

1. b,
b AP e ey

x{(72 — 140y, + 7OV(2))(Q,),-

(ggr)i
2

- (75 — 266w, + 175V3>

+ (164 — 476, + 3501/%)} (i=1,2,3)

where

(Qr)l = br’ (D@r)Z = dra (Qr)’j = Cy

('%r)l = (Qr)l + (Qr)27 (%r)Z = Z(Qr)Z’

('%r)fi = ('Qr)l + (‘Qr)Z

=20, + B (i=1,23)
Wi = @ (i=123)
J,
7).
W= =22 =123

in which
(Zr)il = [Z%r + 2('52{;’)2 + (VV)Z][%I‘ + (‘Qr)il]
— 2, + (AN, + ()]

i=1,23)

Jr = [Z%r + 2("(2{;’)2 + (n/r)Z][%‘r + (%r)l + ("%r)l]

- 2[%r + (&{r)3][g{r + (%r)4]

(AL)

(A2)

(A3)

(A4)

(AS5)

(A6)

(A7)

(A8)

(A9)
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(Z)in =R, + () + WL, + (A ))ia]

- ['%r + (ﬂr)3][%r + (JZ—/r)il]

(i=1,23) (A10)
and

(L) =L, (A)y = (A )y,

(L)) = (A (L= (A ), (Al1)

(f%r)l = (‘er)ll’ ('@r)Z = (‘er)ZZ’ (°@V)3 = ('@r)IZ

(A12)
)\Oﬁr - grﬂ“()
X, = (A13)
(ﬂr - :U’O)[z(ﬁr - /*LO) + 3(§r - )\0)]
Mo
&Y, = — Al4
2(19r — Mo) ) )
with
& =\, h = w
_ ik . _
&= 3 + 4, M1 =
& =0, % =0 (A15)
where the parameters (.+7,); and (%,);; read
- 2 4
(E,Q[r)“ = (4]/0 + F)wr + 4V0 + m (A16)
(L= (L3 = (S)s + (S)s (A17)
(L )y = (A )31 = (53 + (S))s (A18)
(A )y = (A )y = (A )3 = ()33 = (5))s (A19)
- 40? -2 12a2 — 8
(g?r)]](_éhlo + F)WI - 4V() + m (A20)

(B2 = (B =Bz = (B,)31 = (S +(S)s (A21)

(B = (B33 = (B = (B,)32 = (5,)s

in which v denotes the Poisson’s ratio of the matrix, and the
components of Eshelby’s tensor (S,)i,...,(S,)s and @, can
be found in Lee and Simunovic [13].

In addition, the components of (%,); and (@_l,),»j in
Eq. (A1) read

a2
IS

(A22)

(A23)

1
)y =)y = 513 =] (A24)

b, ¢ ¢
)= |c d 4, (,j=12,3) (A25)
| ¢, d, d,
with
r -1
cos  a, Ca <1
a1 — a?
flap=1 """ (A26)
cosh " a, o > 1
[ a2 — 1 T
and
_ 5 4 o dof 2
br = W[Z + a, 30[rf((1r):| (A27)
¢, = L0‘4’*[—3 + (1 + 2a4)f(oz2)] (A28)
T4 - ad) AT
1
d, = §(15 —3b, — 4c,) (A29)
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