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Abstract

A computational model is developed, by implementing the damage models previously proposed by authors into a

finite element code, for simulating the damage evolution and crushing behavior of chopped random fiber composites.

Material damages induced by fiber debonding and crack nucleation and growth are considered. Systematic compu-

tational algorithms are developed to combine the damage models into the constitutive relation. Based on the imple-

mented computational model, a range of simulations are carried out to probe the behavior of the composites and to

validate the proposed methodology. Numerical examples show that the present computational model is capable of

modeling progressive deterioration of effective stiffness and softening behavior after the peak load. Crushing behavior

of composite tube is also simulated, which shows the applicability of the proposed computational model for crash-

worthiness simulations.
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1. Introduction

Chopped random fiber composites are being

used increasingly as structural components in

aerospace, infrastructure and automotive applica-

tions, due to rapid advances in processing science

and engineering. These materials have desirable

engineering properties (e.g., high strength and

stiffness, low density, and high damage tolerance)

and can be tailored to meet the intended function
of the component. In brittle composites such as
ed.
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quasi-brittle chopped random fiber composites

and concrete, the interfacial microcracks by the

debonding of inclusions and the matrix usually

form first due to the fact that (1) the size of

interfacial cracks is usually much larger than that
of the matrix voids or cracks and (2) the interfacial

layer (transition zone) has a poor microstructure

that results in a weaker fracture toughness [22].

Several attempts have been made to accurately

model the fiber/matrix interfacial damage. Duva

et al. [34] combined an interfacial constitutive

model and a probabilistic model to yield an ap-

proach for modeling the stress–strain response of
fibrous composites with fiber/matrix interfacial

damage. Wu et al. [31] performed an axisymmetric

variational analysis of stress transfer into fibers

through a partially debonded interface. They

treated the debonded interface as an external

boundary on which a presumed interfacial shear

stress was specified. Zhao and Weng [32,33] and Ju

and Lee [13] assumed that a partially debonded
fiber can be replaced by an equivalent, perfectly

bonded fiber that possesses yet unknown trans-

versely isotropic moduli. In their study, the

transverse isotropy of the equivalent fiber was

determined based on the assumption that its ten-

sile and shear stresses always vanish in the deb-

onded direction, and its stress components in the

bonded directions exist. Most recently, Meddad
et al. [21] developed a simple micromechanical

constitutive model based on the Carman and

Reifsnider approach [7] for short fiber reinforced

composites undergoing debonding damage.

Although the damage for quasi-brittle chopped

random fiber composites is governed by a com-

bined mechanisms, such as interfacial debonding

between fibers and the matrix and the subsequent
crack nucleation and growth, one damage mech-

anism is dominant compared to the others

depending upon the level of load or deformation.

At a smaller load level far below the peak stress in

the stress–strain curve, the interfacial debonding

usually dominates the damage behavior. As the

load increases up to the peak load, the subsequent

nucleation of microcracks dominates and major
cracks will form from the coalescence of micro-

cracks near the peak load. As the number of cracks

multiplies and crack-driving force exceeds the
fracture toughness of the materials near the peak

load, the balance tilts from the crack nucleation to

crack growth [16]. For example, Karihaloo and

Huang [15] assumed in their study of damage

model for quasi-brittle materials that the stable
propagation of microcracks continues until the

peak load is reached. Since the microcracks are

isolatedly and randomly distributed during this

stage, the prepeak nonlinear stress and strain re-

sponse may be described by using a scalar damage

mechanics approach. A macroflaw will form from

coalescence of microcracks as the load increases.

The major crack will propagate unstably after the
peak stress and as a result a softening type of

stress–strain curve will be observed.

Several models have been proposed to describe

the intrinsic softening of quasi-brittle materials.

Most of the models introduced by Horii et al. [12],

Ortiz [25], and Karihaloo et al. [14] are based on

the assumption that unbroken ligaments bridge

across a discontinuous macroflaw. Sirivedin et al.
[29] used linear elastic and elasto-plastic finite

element analyses to investigate the initiation and

propagation of a matrix crack in short-carbon fi-

ber/epoxy composites. A maximum hoop-strain

criterion and the modified Rice and Tracey

microvoid nucleation, growth, and coalescence

model were used in their derivation. Most recently,

Lee and Simunovic [18,19], Lee [17], and Lee and
Simunovic [20] have presented damage constitutive

models based on micromechanics and continuum

damage mechanics to predict the overall response

and damage evolution in aligned and chopped

random fiber composites. A more detailed review

of damage in chopped random fiber composites

can be found in [23,24,4,29].

Predictive analytical and numerical tools re-
quired to accurately evaluate and design structural

components made of chopped random fiber com-

posites do not currently exist. The availability

of predictive tools will be extremely helpful in

decreasing the design process time and cost by

reducing component testing and increasing the

simulation accuracy of chopped random fiber

composite structures. A numerical program of re-
search is conducted to develop computational

model, by implementing the damage models pre-

viously proposed by authors into a finite element
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code, for simulating the damage evolution and

crushing behavior of chopped random fiber com-

posites. Material damages induced by the interfa-

cial fiber debonding, and nucleation and growth of

microcracks are considered. Debonding on the
interface between fibers and the matrix is simu-

lated by using the micromechanical damage model

[17–19] and the subsequent crack nucleation and

growth in the matrix is treated in the framework

of the continuum fracture mechanics [20].

The composites are assumed to be brittle and to

have isotropic microcrack distribution. It is also

assumed that the damage evolution in the com-
posites is gradual and proportional. By using user-

supplied material subroutine, the micromechanics

and continuum damage mechanics-based damage

models are incorporated into the nonlinear finite

element code DYNA3D. The overall properties of

microcracked composites are estimated using the

differential scheme. Using the developed compu-

tational algorithm, numerical simulations for a
composite plate coupon test and for an automotive

structural component under crash load are carried

out to probe damage evolution and crushing

behavior of the composites. The proposed damage

models are related to model parameters that

have to be determined. A comprehensive program

involving laboratory experiments and numerical

simulations will be needed to determine the model
parameters for the calibration of the constitutive

model.
2. Damage models

2.1. Introduction

Let us consider a composite consisting of an

elastic matrix (phase 0), randomly oriented

perfectly bonded fibers (phase 1), penny-shaped

cracks (phase 2), and partially debonded fibers

(phase 3). It is assumed that the damaged state can

be described by the volume fraction of partially

debonded fibers /3, number of microcracks in unit

volume N and the average size �c of microcracks.
The effects of interactions among constituents,

including the fiber–crack interaction, on the over-

all behavior of composites with moderate and high
concentration of reinforcements will be significant

once the deductive approach based on microme-

chanical analysis is used. However, the proposed

damage model is pheonomenological. It combined

concepts from fracture mechanics and Eshelby�s
inclusion theory to describe complexity of the

damage constitutive responses, and used analogies

that are physical in their nature. Hence, the

interactions among constituents are not essential

in the current pheonomenological damage model.

Systematic computational algorithms will be

developed to combine the damage models into the

constitutive relation. The computational algo-
rithms consist of three computational phases de-

noted by ID, CN and CG. The ID phase is related

to the Eshelby�s inclusion theory for interfacial

debonding between fibers and matrix, while the

CN and CG phases are associated with the frac-

ture mechanics-based model for crack nucleation

and growth, respectively. The debonding of fibers

is assumed to be controlled by the stress of the
fibers and the statistical behavior of the fiber–

matrix interfacial strength in the form of Weibull

probability density function. The formulation of

the stress of the fibers needed to initiate the fiber

debonding was explicitly derived by Ju and Lee

[13] and Lee and Simunovic [19], where the Es-

helby�s inclusion theory and an orientational

average process were employed to derive the
stresses of the fibers. The employed orientational

average process for 3-D random case [18] is iden-

tical to that of Tandon and Weng [30].

Since the Eshelby�s inclusion theory is based

on infinitesimal deformation framework, the ID

phase is restricted to small strain range. However,

after the ID phase, cracks start to nucleate (CN

phase) and grow (CG phase) into adjacent medium
based on the fracture mechanics. CN and CG

phases therefore allow for large deformation. In

the model derivation, rate-dependency is present

and is modeled in crack nucleation and growth

phases.

2.2. Probabilistic micromechanics: interfacial de-

bonding between fibers and the matrix

A micromechanics damage constitutive model

proposed by Lee and Simunovic [18,19] and
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Lee [17] for randomly oriented discontinuous fi-

ber-reinforced composites is employed to model

interfacial debonding between fibers and the ma-

trix. In this micromechanics-based damage model,

progressive interfacial debonding between fibers
and the matrix is assumed to be controlled by the

stress of the fibers and the statistical behavior of

the fiber–matrix interfacial strength in the form of

Weibull probability density function. Only a brief

outline of the model is presented in this paper and

detail descriptions of the model can be found in

[17].

The volume fraction of the partially debonded
fibers /3 can be derived, by applying the Weibull�s
statistical function

p½ð�rfÞm� ¼
S0
M

� �
ð�rfÞm
S0

" #M�1

� exp
(
� ð�rfÞm

S0

" #M)

ð1Þ

where the hydrostatic tensile stresses of the fibers

ð�rfÞm ¼ ½ð�r11Þf þ ð�r22Þf þ ð�r33Þf �=3. The formula-

tion of the stress of the fibers needed to initiate the

fiber debonding was explicitly derived by Ju and

Lee [13] and Lee and Simunovic [19], where the

Eshelby�s inclusion theory and an orientational

average process were employed to derive the

stresses of the fibers. The employed orientational
average process for 3-D random case [18] is iden-

tical to that of Tandon and Weng [30]. The

constants S0 and M in Eq. (1) are scale (Weibull

modulus) and shape parameters of the Weibull

function, respectively. The methods determin-

ing values of these parameters are introduced in

[8,17].

Using the Weibull function in Eq. (1), the
current partially debonded (damaged) fiber vol-

ume fraction /3 at a given level of ð�rfÞm can be

obtained as
/3 ¼ / � Pd ½ð�rfÞm�

¼ / � 1

(
� exp

"
� ð�rfÞm

S0

 !M#)
ð2Þ
where / is the original fiber volume fraction.
2.3. Continuum fracture mechanics-based damage

model: crack nucleation and growth

The following model derivation is identical to
the model in [20] and is here repeated for com-

pleteness of the proposed numerical model.

The model derivation in this section is identical

to the model by Lee and Simunovic [20] and is here

repeated for completeness of the proposed

numerical model. The basic assumption of the

fracture mechanics-based damage model is that

the damaged state of a solid can be described
by the number of microcracks per unit volume N
and the average size �c of microcracks. The con-

stitutive relation for the composites with micro-

cracks distributed in a statistically uniform manner

can be expressed as

r ¼ Cð�c;NÞ : � ð3Þ
where ‘‘:’’ denotes the tensor contraction, r is the

macroscopic stress, C is the overall stiffness tensor,

� is the macroscopic strain. The rate form of

Eq. (3) can be expressed as

_r ¼ oC

oN
_N : �þ oC

o�c
_�c : �þ C : _� ð4Þ

The above material model is therefore fully defined

by the crack growth rate _�c, crack nucleation rate
_N , and their respective effect on the overall stiffness

tensor. The rate form of the constitutive relation in

Eq. (4) can be solved by applying numerical inte-

gration. As mentioned in Section 1, it is assumed
that the damage is proportional. The equivalent

incremental form for the Eq. (4) can be written as

rnþ1 ¼ rn þ C : D�nþ1 þ
oC

o�c
D�cnþ1 : �n

þ oC

o�c
D�cnþ1 : D�nþ1 þ

oC

oN
DNnþ1 : �n

þ oC

oN
DNnþ1 : D�nþ1 ð5Þ

where the subscript n denotes the nth integration
time step.
2.3.1. Rate of crack nucleation

Previous investigations on the nucleation
of microcracks for several materials [5,26,28,

9,27] have shown that the nucleation rate _N of
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microcracks can be expressed as exponential rela-

tions, under the applied stress r:

_N ¼ _N0 � exp
r � rn0

r1

	 

; r > rn0

¼ 0; r < rn0

ð6Þ

where rn0 is the threshold stress for the nucleation

of microcracks, and _N0 and r1 are experimentally

determined material parameters. It is assumed that

the applied stress r ¼ ½ðr11Þ þ ðr22Þ þ ðr33Þ�=3. It is
worth mentioning that the rate equation for crack

nucleation in Eq. (6) is applicable to both ductile

and brittle materials [27]. More complex forms

have been also used in the literature and can be

substituted for Eq. (6) (e.g., [2]).

In the model derivation, the composites are

assumed to be brittle, and the size of crack does

not correspond directly to the actual crack size but
is the concept to model progressive damage ob-

served in the experiments on the macroscopic level.

Also the failure strain of composite specimens used

in drop tower test was less than 1% (extremely

brittle). Therefore, the rate equation for crack

nucleation in Eq. (6) could be employed for

modeling the crack nucleation in brittle chopped

random fiber composites.
The incremental form for numerical approxi-

mation of Eq. (6) by the backward Euler integra-

tion scheme can be written as

Nnþ1 ¼ Nn þ Dtnþ1
_N0 � exp

ðrÞnþ1 � rn0

r1

	 

ð7Þ

In this study, the incremental nonlinear equation

for the crack nucleation N is solved using the

Newton�s method.

2.3.2. Crack growth criteria

The crack growth criteria proposed by Addessio
and Johnson [1] is employed. In their paper, the

instability criteria for a single crack was derived by

considering the energy balance around the micro-

crack. Applying the volume averaging procedure

with the assumptions of an exponential crack size

distribution and isotropy, the damage surfaces for

a continuum with microcracks are obtained in

terms of the pressure p and the deviatoric stress
q defined as
p ¼ � 1

3
rii; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
qijqij

r
ð8Þ

where qij ¼ rij þ pdij.

The damage surface in case of tension (p < 0)

is (see Addessio and Johnson [1])

F nðp; q;�cÞ ¼ q2 þ 45

4ð5� m0Þ
ð2
	

� m0Þp2 �
2K
�c



¼ 0

ð9Þ
In compression (p > 0) (see Addessio and Johnson

[1]),

F tðp;q;�cÞ¼ q2� 45

2ð3�2m20Þ

	 ðlfrp

"
þr0Þ lfrpþr0þ

ffiffiffiffiffiffiffi
pK
�c

r !
þK

�c

#
¼ 0

ð10Þ

In the above expression, r0 is the cohesive stress,
lfr is the coefficient of friction, and K is defined as

K 
 p
2

2� m0
1� m0

KICG0 ð11Þ

where KIC is the plane strain fracture toughness

of the brittle solids.

2.3.3. Rate of crack growth

Cracks grow at a fraction of Rayleigh wave

speed which for applications is approximated by

the shear wave velocity [1]. The rate of crack

growth can be expressed as (see Addessio and
Johnson [1])

_�c ¼ b _cmax tanhðdsÞ ð12Þ

where _cmax is the shear wave speed _cmax ¼
ffiffiffiffi
E�
q�

q� �
,

in which E� and q� are the overall Young�s mod-

ulus and the density, respectively, of the material,

ds is the measure of the distance the amount by

which the state of stress exceeds the damage sur-

face, and b is a scaling factor for crack speed and is

assumed to be a constant. It should be noted that

Eq. (12) is a rate-dependent approach to determine

crack growth rate _�c and it implies that the final
stress lies above the damage surface [1].

The rate equation in Eq. (12) can be solved

by applying a standard numerical integration
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Fig. 1. Overall algorithm for user-supplied subroutine.
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technique. For the backward Euler method, the

rate equation can be written in an incremental

form as

�cnþ1 ¼ �cn þ bDtnþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�Þnþ1

ðq�Þnþ1

s
tanhðdsÞ ð13Þ

where �cnþ1 denotes the size of microcrack at time

t ¼ tnþ1.

The stresses calculated for a specified velocity

field, or equivalently, the strain rate, the state of
stress can be used to determine the stability of the

crack using the criteria expressed in Eqs. (9) and

(10). If the stress state is within the damage sur-

face, then the deformation is elastic and there are

no changes in the mean crack size. If, however,

the stress state is outside the damage surface, then

the changes in the mean crack size are obtained

from Eq. (12).

2.4. Effective moduli of microcracked solids

In this study, the differential scheme derived by

Hashin [11] is employed to obtain the effective

elastic moduli of microcracked composites. The

normalized elastic moduli of a solid containing

randomly distributed penny-shaped cracks can be
summarized as

E�

E0

¼ m�

m0

� �10=9
3� m0
3� m�

� �1=9

ð14Þ

G�

G0

¼ 1þ m0
1þ m�

E�

E0

ð15Þ

x ¼ 5

8
ln

m0
m�

þ 15

64
ln
1� m�

1� m0
þ 45

128
ln
1þ m�

1þ m0

þ 5

128
ln
3� m�

3� m0
ð16Þ

where m0, E0, G0 are the Poisson�s ratio, Young�s
modulus, and shear modulus, respectively, of un-

cracked solid; and m�, E�, G� are the effective

Poisson�s ratio, Young�s modulus, and shear mo-
dulus, respectively, of a cracked solid. x ¼ N�c3, in
which N is the number of cracks in composites and
�c is the mean crack radius, signifies the crack

density parameter. The Newton iteration method

is utilized to obtain the normalized elastic moduli

E�=E0, G�=G0, and m�=m0.
3. Numerical algorithms for progressive damage

modeling

The micromechanics and fracture mechanics-
based damage models are implemented into the

explicit finite element code DYNA3D. By writing

the subroutines for user supplied materials and

incorporating them into the nonlinear finite ele-

ment program, the progressive damage evolutions

due to the interfacial fiber debonding, nucleation

of microcracks, and growth of microcracks are

taken into account into the constitutive relation
for the chopped random fiber composites. The fi-

nite element implementation allows us to analyze

various numerical tests, to simplify investigation

of the effects of modeling variables, and to per-

form customized post-processing of the data that

would be most applicable for this study.



H.K. Lee et al. / Computational Materials Science 29 (2004) 459–474 465
The overall scheme for the user-supplied mate-

rial subroutines simulating the progressive damage

behavior of composite materials for a specified

loading or displacement is shown in Fig. 1. The

algorithm consists of three computational phases
denoted by ID, CN, and CG. The ID phase, which

is restricted to small strain range (�6 �limit; e.g.,

�limit ¼ 0:01, 0.015), is related to the micromechan-

ics-based damage model for interfacial debonding

between fibers and the matrix, and the CN and CG

phases are associated with the fracture mechanics-

based model for crack nucleation and crack growth
Fig. 2. (a) Algorithm for ID phase. (b) Algorithm
phases, respectively. The input parameters for the

user subroutine consist of the material properties

Em, mm, Ef , mf ; the volume fraction and aspect ratio

of fibers /, a; the Weibull parameters S0, M ; the

crack nucleation related parameters _N0, rn0, r1; and
the crack growth related parameters �c0,N0, lfr, b. In
the user-material subroutines, history variables,

such as the volume fraction of damaged fibers,

the number of microcracks, and the mean crack

size, are updated at each time increment step.

Fig. 2(a)–(c) show detailed computational pro-

cedures for ID, CN, and CG phases, respectively.
for CN phase. (c) Algorithm for CG phase.
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At the ID phase shown in Fig. 2(a), the converged

value of Weibull probability function is calculated

and the current volume fraction of fibers is up-

dated. After computing the effective Young�s
moduli and Poisson�s ratio at the end of ID phase
using the updated value of fiber volume fraction,

the program at the CN phase shown in Fig. 2(b)

checks whether microcracks are nucleated by

comparing current pressure with threshold pres-
Fig. 2 (cont
sure. If the microcracks are calculated to be

nucleated, the number of microcracks is updated

by using the Newton�s method for the incremental

form of crack nucleation. After computing the

current stiffness tensor and its derivative with re-
spect to current number of microcracks and

updating the stresses, the program enters into

the CG phase shown in Fig. 2(c) to compute the

current value of mean crack radius.
inued)



Fig. 2 (continued)
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The crack growth criteria presented in Eqs. (9)

and (10) are applied to decide whether the size of

microcracks increases at the current stress state. If

the microcracks grow, the mean crack radius is

iteratively computed by using the iterative Newton
scheme for the nonlinear incremental Eq. (13). The

stresses at the current load step are finally computed

with the updated mean crack radius. It should

be noted that the procedures described above are

applied to each Gaussian integration point of all

finite elements at each load increment step.

The numerical algorithms are based on the

strain driven algorithm in which the stress history
is to be determined by a given strain history.

Therefore, the current computational approach

could successfully deal with the softening behavior

(negative stiffness zone). It is also worth mention-

ing that the current model can be easily extended
to be able to model strain localization by relating

potential fracture energy of the element size to the

curve shape in the softening phase.

Two numerical examples are considered in this

study. While the first example analyzes damage

progression of composite plate coupon under dy-

namic loading, the second numerical example for

drop tower test is simulated numerically to assess
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the potential of the implemented computational

model for crashworthiness simulations.
4. Simulation of composite plate coupon test

A glass fiber polymeric composite plate under

dynamic loading conditions is considered to ob-

serve the damage behavior of the composites. As

shown in Fig. 3, the ratio of thickness, width, and

length of the plate is assumed to be 1:10:100. Two

loading conditions, compression and tension, are

considered. The prescribed velocity vðtÞ is imposed
on the nodes on the top of the plate. The pre-

scribed velocity is related to the rate of strain as

vðtÞ ¼ _�L ¼ _�L0 � expð_�tÞ: ð17Þ

The prescribed velocity corresponding to _� ¼ 12/s

is applied in the direction as shown in Fig. 3 for

compressive loading and in the opposite direction
for tensile loading. The material properties of the

composites used in this simulation are adopted

from [23]: Em ¼ 3:0 GPa, mm ¼ 0:35, Ef ¼ 72:0
GPa, mf ¼ 0:17, q ¼ 1403 kg/m3, /1 ¼ 0:3, a ¼ 5:0.
Fig. 3. A schematic diagram of composite plate coupon test.
The crack nucleation and growth related parame-

ters, and Weibull parameters are assumed to be

rn0 ¼ 1:0	 1010 N/m2, _N0 ¼ 1:0	 1011/s/m3, r1 ¼
2:0	 109 N/m2; KIC ¼ 10:0 Pam, b ¼ 1:0	 10�5,
l0 ¼ 0:26, N0 ¼ 1:0	 1011/m3, �c0 ¼ 1:4	 10�5 m;

S0 ¼ 163:5 MPa, and M ¼ 4:0. These values are

chosen from a combination of experimental results

from the literature and do not correspond to a

specific material.

Fig. 4 shows the stress–strain curves of the

composite coupon under compression predicted by

the crack nucleation (CN) damage model, crack
growth (CG) damage model, and crack nucleation

and growth (CNG) damage model. In the figure,

each damage model predicts the softening behav-

ior of the specimen after the peak load. CN model

predicts the highest peak load with minimal evo-

lution of damage, since the damage of the com-

posite coupon is mainly due to the crack growth

and the effect of crack nucleation on the degra-
dation of specimen is negligible. It can be con-

cluded that the substantial damage evolution

occurs when the nucleated microcracks begin to

grow or unstabilized since the damage parameter

x is much more strongly influenced by the size

of microcracks than the number of microcracks

(x ¼ N�c3).
Fig. 5 shows the predicted evolutions of the

number of cracks versus strain and the mean crack

radius versus strain corresponding to Fig. 4. It is
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Fig. 5. The predicted evolutions of number of cracks versus

strain (a) and crack size versus strain (b) corresponding to

Fig. 4.
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Fig. 6. The comparison between CG model and IDCG model

for overall uniaxial, tensile responses of composites.
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observed from Fig. 5(a) that the number of cracks

remains constant at the initial stage of loading and

then begins to increase at a certain threshold value

of strain for both CN and CNG models. While the
number of cracks N is increased only slightly and

then remains constant again even at the deep strain

range for the CNG model, it is increased very

rapidly after the threshold strain in CN model.

The value of strain at which the number of cracks

begins to remain constant at the deep strain range

of CNG model in Fig. 5 corresponds to the peak

point of the stress–strain curve of CNG model in
Fig. 4. Fig. 5(b) shows that the size of crack re-
mains constant up to the threshold strain but, after

that point, it suddenly begins to increase very

rapidly until the compressed coupon reaches its

ultimate strength in CG model. Finally, it is de-

duced for this particular example that, after the
peak load, the number of cracks remain constant

and the growth of crack dominates the softening

behavior.

The damage behavior of the composite coupon

shown in Fig. 3 under tensile loading with strain

rate of _� ¼ 12/s is analyzed by using the CG model

and the combined interfacial fiber damage and

crack growth (IDCG) damage model. Fig. 6 shows
stress–strain curves of the composite coupon un-

der tensile loading predicted by the two damage

models. We observe from Fig. 6 that both models

can predict the softening behavior induced by the

damage mechanisms considered. The values of

peak stresses for the tensile loading are found to be

smaller than those for the compressive loading

shown in Fig. 4. It is mainly because the existing
cracks of the composite coupon under tensile

loading begin to grow at a smaller value of strain

as shown in Fig. 7. From Figs. 6 and 7, it can be

seen that the interfacial fiber debonding affects

both the stress–strain behavior and the evolution

of crack growth of the coupon. Including the

interfacial fiber debonding damage mechanism
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Fig. 8. Finite element model for drop tower simulation.

470 H.K. Lee et al. / Computational Materials Science 29 (2004) 459–474
into the crack growth damage model makes the

composite coupon much more ductile with the

peak stress remaining almost the same. It is also

observed from Fig. 7 that the combined IDCG

model predicts less steep rate of crack growth and
greater size of crack at ultimate strength. Numer-

ical results for the specimen under compressive

and tensile loading show that the present approach

is capable of modeling deterioration of effective

stiffness of the composites and is stable in post-

peak strain softening region.

The current model does not separately address

the problem of localization of damage and failure.
However, it turns out that the chopped random

fiber materials possess particular failure event

properties that alleviate this fundamental problem.

In chopped random fiber materials, the localiza-

tion and failure is shown to exhibit the charac-

teristics of an uncorrelated one-dimensional event.

Instead of breaking by the growth of a critical

crack, the failure of the system is driven by the
uncorrelated events (e.g., fiber breaks) in a one-

dimensional zone that spans the system [3,10],

which is orthogonal to the direction of the domi-

nant strain. The width of the failure zone can be

related to the fiber network characteristics and the

size of the domain. Linear uncorrelated failure in a
zone of finite width is compatible with the pre-

mises of the cohesive band framework [6], and the

current model can be easily extended to include

the cohesive band formulation. Alternatively, the

localization can be handled by using the finite
element resolution that corresponds to the char-

acteristic size of failure localization features.
5. Simulation of crushing of drop tower

The drop tower test has been primarily used as

a benchmark to evaluate the capabilities of energy
absorption and to investigate crushing behavior of

composite materials. A square, chopped carbon/

polyurethane composite tube under impact load-

ing is considered to simulate the damage evolution

and crushing behavior of the composite tube.

Since the crack growth mechanism is shown to

dominate the damage behavior of the composites

from the previous example, only the crack growth
(CG) damage model is considered in this simula-

tion. Fig. 8 shows the finite models for a

drop mass, composite tube, and the initiator. In
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computational model, the drop mass is modeled by

a single solid element and the composite tube is

modeled by using Belyschko–Tsay shell elements.

Nodes on the top edge of composite tube is tied to

the bottom of solid element of drop mass. A
contact surface is defined between the nodes of

composite tube and segments of initiator element

face. The initiator is modeled as rigid wall re-

strained in all degrees of freedom and laid at the

bottom.

For the elements that lose their load-carrying

capability as the cracks in the elements grow sig-

nificantly, the element elimination algorithm pro-
vided in DYNA3D is applied to avoid numerical

difficulties that may be encountered during

numerical simulation. An initial velocity of 8.75 m/

s is applied on nodes of composite tube and drop

mass. The material properties of the carbon/poly-

urethane are E0 ¼ 2:067 GPa, m0 ¼ 0:35, E1 ¼ 227:4
GPa, m1 ¼ 0:23, q ¼ 1493 kg/m3, j� ¼ 213 GPa,

l� ¼ 187 GPa. We assumed the same fracture
Fig. 9. A sequence of deformed shape o
toughness KIC and crack growth related parameters
�c0, N0, lfr, b as those used in the previous example.

In the user-material subroutines, history variables

such as the volume fraction of damaged fibers, the

number of microcracks, and the mean crack radius
are monitored at each time step. It is assumed that

the tube is reached to its ultimate failure either by

the accumulation of growth of cracks (strain driven

failure criterion) or by the excessive stresses (stress

driven failure criterion).

Fig. 9 shows the sequence of deformed shaped

of the square carbon/polyurethane composite

tube. First, failure starts from the corner of com-
posite tube. As the corner failure proceeds, the

weakest segment of tube in the other direction is

folded. The segment of folded section then fails.

Fig. 10 shows the predicted force–displacement

(P–u) curves for the composite tube. After P–u
curves reach peak, they start to fluctuate due to

progressive crushing of composite tube. Two fail-

ure criteria are employed in the drop tower test
f the square tube during crushing.



Fig. 10. The comparison of force–displacement (P–u) curves

between two different failure criteria.

472 H.K. Lee et al. / Computational Materials Science 29 (2004) 459–474
simulation: (1) stress driven failure criterion and

(2) strain driven failure criterion. Fig. 11 exhibits a

typical stress–strain curve of softened composites,

where point A represents critical point of stress
driven failure criterion and point B represents

critical point of strain driven failure criterion. In
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Fig. 11. Typical stress–strain curve of softened composites,

where A and B represent critical points of stress driven and

strain driven failure criteria, respectively.
Fig. 10, top two curves represent the predicted P–u
curves for strain driven failure criterion. Because

of the nature of two different failure criteria,

one can observe that tube absorbs more energy

when using a strain driven failure criterion.
6. Concluding remarks

The damage evolution of chopped random fiber

composites under crushing type of loading was

investigated. Material damages induced by the

interfacial fiber debonding, the nucleation of mi-
crocracks, and the growth of cracks were consid-

ered. The systematic iterative computational

algorithms were developed to combine the damage

models in the constitutive relation. The user-

supplied material subroutines were coded using

the damage models and incorporated into the

nonlinear finite element code DYNA3D. The

capability of present computational damage ap-
proaches to model progressive deterioration of

effective stiffness and softening behavior after the

peak load was shown from benchmark examples

on the composite coupon for compressive and

tensile behavior.

The outcome from the numerical simulations

on benchmark examples can be summarized as

follows: (1) CG or CNG model would provide
more accurate predictions of the damage consti-

tutive behavior of the composites, since the effect

of the crack growth on the constitutive behavior of

the composites was shown to be more significant in

comparison with the crack nucleation, and (2)

the influence of the interfacial fiber debonding

on the constitutive behavior of the composites

was observed to be quite remarkable; therefore,
IDCG model would be needed when simulating

the composites having a weak interfacial bond

strength. Crushing behavior of composite tube was

also simulated, which shows the applicability of

the proposed computational tool for crashwor-

thiness simulations.

However, further investigations on responses of

the composites under loading paths other than a
uniaxial loading (e.g., shear, multiaxial state, cyclic

loading, etc.) are needed to realistically assess the

performance of the proposed computational
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algorithms and damage models. Numerical simu-

lation for the crushing behavior of composite tube

also shows the applicability of the present com-

putational procedure for crashworthiness simula-

tions. The developed damage model includes
several model parameters that have to be input in

the computer program. Future efforts need to

be made to determine the parameters for the

calibration of composite constitutive model. Fur-

thermore, experimental crash tests for chopped

random fiber composite structures are necessary

to verify the present procedure on the crashwor-

thiness simulations.
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