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Abstract

Damage constitutive models based on micromechanical formulation and a combination of micromechanical and macromechanical
damage criterions are presented to predict progressive damage in aligned and random fiber-reinforced composites. Progressive interfacial
fiber debonding models are considered in accordance with a statistical function to describe the varying probability of fiber debonding. Based
on an effective elastoplastic constitutive damage model for aligned fiber-reinforced composites, micromechanical damage constitutive
models for two- and three-dimensional (2D and 3D) random fiber-reinforced composites are developed. The constitutive relations and
overall yield function for aligned fiber orientations are averaged over all orientations to obtain the constitutive relations and overall yield
function of 2D and 3D, random fiber-reinforced composites. Finally, the present damage models are implemented numerically and compared
with experimental data to show the progressive damage behavior of random fiber-reinforced composites. Furthermore, the damage models
will be implemented into a finite element program to illustrate the dynamic inelastic behavior and progressive crushing in composite
structures under impact loading. Published by Elsevier Science Ltd.
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1. Introduction

Damage and failure modes in discontinuous fiber compo-
sites having a complex structure are best understood in
terms of the arrangement of reinforcing fibers and matrix
resin. Analyses and tests to assess the damage in these
composites have been carried out [1–4]. The different fail-
ure mechanisms of laminate composites caused by stresses
in fiber direction or perpendicular to the reinforcement have
been cast into failure criteria based on experimental
evidence by a number of researchers [5–7]. However, new
failure criteria based on experimental verifications are
needed for performing failure analysis of discontinuous,
aligned and random fiber composites, because the failure
mechanisms of discontinuous fiber composites are different
from those for laminates. A more detailed failure review of

fiber-reinforced composites can be found in Matzenmiller
and Schweizerhof [8], Kutlu and Chang [9], Meraghni and
Benzeggagh [10], and Meraghni et al. [11].

Micromechanical approaches enable us to evaluate and
predict local stress and strain fields in each constituent. In
addition, these approaches allow us to address local fluctua-
tions due to the onset and the evolution of damage mechan-
isms. Therefore, the derivation of the constitutive Equations
in the form of a phenomenological parameter model from
entirely micromechanical considerations is required to
perform the rigorous analysis of composite structures.
Such an approach is more justified in the case of composite
materials reinforced with randomly oriented discontinuous
fibers. Indeed, the microstructure of these materials, the
complexity of damage mechanisms, and the diversity of
their damage scenarios significantly influence their overall
properties. Furthermore, because of the natural tendency of
the structure to acquire lower energy modes, both material
and structural damage processes need to be thoroughly
understood and modeled to simulate and eventually design
the desirable sustained crush of the component. Therefore,
accurate analysis and the ability to simulate the complete
response of components and systems of random fiber poly-
mer matrix composites are essential and require accurate
micromechanical damage constitutive models.
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A micromechanical analysis based on the modified
Mori–Tanaka method was performed by Meraghni and
Benzeggagh [10] and Meraghni et al. [11] to address the
effect of matrix degradation and interfacial debonding on
stiffness reduction in a random discontinuous fiber compo-
site. Their modeling relied on an experimental approach,
developed through a methodology of experimental identifi-
cation of basic damage mechanisms, which involved ampli-
tude analysis of acoustic emission and microscopic
observations. Tohgo and Weng [12] and Zhao and Weng
[13–15] proposed progressive interfacial damage models
for ductile matrix composites. They used Weibull’s [16]
probability distribution function to describe the probability
of particle debonding. Ju and Lee [17] developed a micro-
mechanical damage model to predict the overall elastoplas-
tic behavior and damage evolution in ductile matrix
composites. In their derivation, to estimate the overall elas-
toplastic-damage behavior, an effective yield criterion was
derived based on the ensemble-volume averaging procedure
and the first-order effects of eigen-strains stemming from
the existence of inclusions.

In a recent paper [18], we proposed a damage constitutive
model of progressive debonding in aligned fiber-reinforced
composites. We derived elastic moduli and predicted the
overall elastoplastic behavior and damage evolution in
aligned fiber-reinforced composites. Using our previous
research [18], micromechanical damage constitutive models
for two- and three-dimensional (2D and 3D) random fiber
reinforced composites are developed in this paper to predict
progressive damage in random fiber-reinforced composites.
The present micromechanical constitutive model will
establish the theoretical foundation needed for simula-
tion of progressive crushing of composite structures.
The governing field Equations and overall yield function
for aligned-fiber orientations are averaged over all
orientations to obtain the constitutive relations and over-
all yield function of 2D and 3D random fiber-reinforced
composites.

In our derivation, fibers are assumed to be elastic spher-
oids that are embedded in a ductile polymer matrix. Further-
more, the ductile matrix behaves elastoplastically under
arbitrary 3D loading/unloading histories. All fibers are
assumed to be non-interacting for dilute composite medium
and initially embedded firmly in the matrix with perfect
interfaces. After the interfacial debonding between fibers
and the matrix, these partially debonded fibers are regarded
as equivalent, transversely isotropic inclusions. The
probability of partial debonding is modeled as a two-
parameter, Weibull process. We employ the average
internal stresses of fibers as the controlling factor. Small
strains are assumed; therefore, the statistical microstructure
of fibers embedded in a ductile matrix remains the same.
Finally, the present damage models are implemented
numerically and compared with experimental data to show
the progressive damage behavior of random fiber-reinforced
composites.

2. Overall elastoplastic behavior of composites

2.1. Recapitulation of the overall elastoplastic behavior of
aligned fiber-reinforced composites

First, an initially perfectly bonded, two-phase composite
consisting of a matrix (phase 0) with bulk modulus � 0 and
shear modulus � 0, and aligned discontinuous, randomly
dispersed, spheroidal (prolate) fibers (phase 1) with bulk
modulus � 1 and shear modulus � 1 is considered. When
spheroidal inclusions (discontinuous fibers) are aligned,
the composite as a whole is transversely isotropic. Subse-
quently, as loadings or deformations are applied, some
fibers are partially debonded (phase 2). These partially
debonded fibers are regarded as equivalent, transversely
isotropic inclusions. Following Zhao and Weng [13] and
Ju and Lee [17], a partially debonded fiber can be replaced
by an equivalent, perfectly bonded fiber that possesses yet
unknown transversely isotropic moduli. The transverse
isotropy of the equivalent fiber can be determined in such
a way that: (a) its tensile and shear stresses will always
vanish in the debonded direction; and (b) its stresses in
the bonded directions exist because the fiber is still able to
transmit stresses to the matrix on the bonded surfaces (see
figure 3.1 in Lee [19]).

With the help of Eshelby’s tensor for an ellipsoidal inclu-
sion, the effective elastic stiffness tensor C� of aligned (in
the x1-direction) fiber-reinforced composites was explicitly
derived in our previous research [18] as

C� � �Fijkl��1� �2� �3� �4� �5� �6� �1�
where a transversely isotropic fourth-rank tensor �F is
defined by six parameters bm (m � 1–6):

�Fijkl�bm� � b1 �ni �nj �nk �nl � b2��ik �nj �nl � �il �nj �nk � �jk �ni �nl

� �jl �ni �nk� � b3�ij �nk �nl � b4�kl �ni �nj � b5�ij�kl

� b6��ik�jl � �il�jk� �2�
Here, �n denotes the unit vector and � ij signifies the
Kronecker delta. For a spheroid of a1 � a2 � a3� in which
ai �i � 1� 2� 3� is one of the three semi-axes of the ellipsoid,
the 1-direction is chosen as symmetric; therefore, we have
�n1 � 1� �n2 � �n3 � 0� In addition, the parameters of �1�…� �6
in Eq. (1) are

�1 � �11 � �12 � �21 � �22 � 2�1 � 2�2 � 4�3

�2 � ��2 � �3 �3 � �21 � �22 �4 � �12 � �22

�5 � �22 �6 � �2 �3�
in which the parameters �11�…��22 and �1�…��3 are given
in the appendix of our previous research [18].

Next, we consider the overall elastoplastic responses of
progressively debonded, aligned fiber composites, which
initially feature perfect interfacial bonding between fibers

H.K. Lee, S. Simunovic / Composites: Part B 31 (2000) 77–8678



and the matrix in two-phase composites. It is known that
partial interfacial debonding may occur in some fibers under
applied loading. Therefore, an original two-phase composite
may gradually become a three-phase composite consisting
of the matrix, perfectly bonded fibers, and partially
debonded fibers. We will regard partially debonded fibers
as equivalent, perfectly bonded transversely isotropic fibers.
For simplicity, the von Mises yield criterion with isotropic
hardening law is assumed here. Extension of the present
framework to general yield criterion and general hardening
law is possible.

An effective yield criterion is derived based on the
ensemble-volume averaging process and first-order effects
of eigen-strains due to the existence of spheroidal (prolate)
fibers. The effective yield criterion, together with the overall
associative plastic flow rule and hardening law, establishes
the analytical foundation for the estimation of effective elas-

toplastic behavior of ductile matrix composites. By collect-
ing and summing up all the current stress norm
perturbations produced by any typical perfectly bonded
fiber and any typical partially debonded fiber and averaging
over all possible locations, the ensemble-averaged square of
the current stress norm at any matrix point can be derived as

�H�m�x� � � o � T � � o �4�
where � o is the far-field stress and the components of the
positive definite fourth-rank tensor T read

Tijkl � �Fijkl��t1� �t2� �t3� �t4� �t5� �t6� �5�
in which

�t1 � �11 � �12 � �21 � �22 � 2�1 � 2�2 � 4�3

�t2 � ��2 � �3 �t3 � �21 � �23

�t4 � �12 � �23 �t5 � �23 �t6 � �2 �6�
here the parameters �11�…��23 and �1�…��3 are given
in our previous research [18].

The ensemble-averaged current stress norm at a matrix
point can also be expressed in terms of the macroscopic
stress ��� Following Ju and Chen [20], the relation between
the far-field stress � o and the macroscopic stress �� takes the
form

� o � P � �� �7�

where the fourth-rank tensor P reads

P � �I �
�2

r�1

�r�I � S�·�Ar � S��1��1

� �Fijkl�p1� p2� p3� p4� p5� p6� �8�

in which I is the fourth-rank identity tensor, � r denotes the
volume fraction of the r-phase, “·” signifies the tensor multi-
plication, and the fourth-rank tensor Ar is defined as

Ar � �Cr � C0��1·C0 �9�

Here Cr is the elasticity tensor of the r-phase. The compo-
nents of Eshelby’s tensor S for a spheroidal inclusion
embedded in an isotropic linear elastic and infinite matrix
are

with

� �
	

�	2 � 1�3�2 �cosh�1 	 � 	�	2 � 1�1�2�� for 	 � 1

	

�1 � 	2�3�2 �	�1 � 	2�1�2 � cos�1	�� for 	� 1

����
���

�11�
Here, the spheroid aspect ratio is defined as 	 � a1�a2� In
addition, the components p1�…� p6 in Eq. (8) are

p1 � �11 � �12 � �21 � �22 � 2�1 � 2�2 � 4�3

p2 � ��2 � �3 p3 � �21 � �23

p4 � �12 � �23 p5 � �23 p6 � �2 �12�
where the parameters �11�…��23 and �1�…��3 are
given in our previous research [18].

By combining Eqs. (4) and (7), we arrive at the alterna-
tive expression for the ensemble-averaged current stress
norm (square) at a matrix point

H� �m�x� � �� � �T � �� �13�
where the positive definite fourth-rank tensor �T is defined as

�T � �Fijkl� �T1� �T2� �T3� �T4� �T5� �T6� �14�
and the parameters �T1�…� �T6 are given in our previous
research [18]. More details of elastoplasic stress–strain
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relationship for partially debonded, three-phase aligned
fiber-reinforced composites can be found in our previous
research [18].

2.2. Effective elastic moduli and elastoplastic behavior of
randomly oriented fiber-reinforced composites

Consider composite models in which spheroidal fibers
with an aspect ratio of 	 (the ratio of length to diameter)
are uniformly dispersed and randomly oriented in 2D or 3D
space. The constitutive relations and the overall yield func-
tion for randomly oriented composites can be obtained by
performing the averaging process over all orientations of
governing constitutive field Equations. Accordingly, the
constitutive relations and overall yield function for aligned
fiber orientations given in Section 2.1 are averaged over all
orientations to obtain the constitutive relations and overall
yield function of 2D and 3D, randomly oriented fiber-rein-
forced composites. The overall plastic flow rule and hard-
ening law, with the proposed overall yield function, then
characterize the macroscopic elastoplastic behavior of the
randomly oriented fiber-reinforced composites under 3D
arbitrary loading/unloading histories.

2.2.1. Three-dimensional random fiber orientation
To predict the behavior of a system with a 3D random

fiber orientation, it is convenient to introduce a spherical
coordinate designation for the direction cosines. Fig. 1
shows the coordinate convention. The local axes of an
inclusion are denoted by the unprimed coordinate
system and the fixed or material axes by the primed
one. Axis 1 is fiber direction and Axis 3 can be taken to
lie in the 1 �2 � plane with no loss in generality. Denoting lij as
the direction cosine between the ith primed and jth
unprimed axes, we have

x �
i � �lij�xj �15�

where the transformation matrix [lij] has the form of

�lij� �
sin � cos � sin � sin � cos �

�cos �cos � �cos � sin � sin �

sin � �cos � 0

�
���

	


� �16�

Any second-rank tensor (e.g. stress tensor) can be trans-
formed as

� �
ij � likljl�kl �17�
When all inclusions are randomly oriented in the 3D

space, the composite as a whole is macroscopically isotro-
pic. The symbol � · � is used to define the orientational
averaging process for all possible orientations as

� · ��
�

0

�

0
�·�P����� sin � d� d� �18�

where P����� is the probability density function. In the
special case of uniformly random orientation, we have
P����� � 1�2�

For any transversely isotropic fourth-rank tensor M,
which takes form of

Mijkl � �Fijkl�M1�M2�M3�M4�M5�M6� �19�
where the transversely isotropic fourth-rank tensor �F is
defined in Eq. (2), the following formulation is obtained:

� Mijkl �� 1
2

�

0

�

0
lmilnjMmnpqlpklql sin � d� d�

� �1�ij�kl � �2��ik�jl � �il�jk� �20�
in which

�1 � 1
15

�M1 � 5�M3 � M4 � 3M5�� �21�

�2 � 1
15

�M1 � 10M2 � 15M6� �22�

The formulation in Eq. (20) shows that, after the 3D orien-
tational averaging process, any transversely isotropic
fourth-rank tensor will become an isotropic fourth-rank
tensor.

Assuming the uniform distribution of overall strains [21],
with the help of the formulation in Eq. (20), the effective
elasticity tensor � C� � of 3D random fiber composites can
be obtained as

� C� �� �c1�ij�kl � �c2��ik�jl � �il�jk� �23�
where

�c1 � 1
15

��1 � 5��3 � �4 � 3�5�� �24�

�c2 � 1
15

��1 � 10�2 � 15�6� �25�

Here the parameters of �1�…� �6 are given in Eq. (3). More-
over, the effective Young’s modulus E� and Poisson’s ratio
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Fig. 1. Spherical coordinates.




 � of 3D random fiber composites are easily obtained
through the following relations

E� � �c2�3 �c1 � 2 �c2�
�c1 � �c2

�26�


� � �c1

2� �c1 � �c2� �27�

We now consider the overall elastoplastic responses of
progressively debonded composites with randomly oriented
fibers in 3D space. By using the orientational averaging
process in Eq. (20), the orientation-averaged square of stress
norm � Hm � at any matrix point can be obtained as

� Hm �� � o �� T �� � o �28�

where the isotropic fourth-rank tensor � T � is

� Tijkl �� 1
2

�

0

�

0
lmilnjTmnpqlpklql sin � d� d� �29�

The components of the positive definite fourth-rank tensor
� T � read

� Tijkl �� �t1�ij�kl � �t2��ik�jl � �il�jk� �30�

with

�t1 � 1
15

��t1 � 5��t3 � �t4 � 3�t5�� �31�

�t2 � 1
15

��t1 � 10�t2 � 15�t6� �32�

where the parameters �t1�…� �t6 are given in Eq. (6).
In Eq. (28), � Hm � is described in terms of the far-field

stress � o
� Alternatively, the orientation-averaged square of

the stress norm can also be expressed in terms of the macro-
scopic (orientation-averaged) stress � �� � � Following our
previous research [18], the relationship between the far-field
stress � o and the macroscopic stress � �� � takes the form

� o �� P ��� �� � �33�

where the fourth-rank tensor � P � reads

� Pijkl ��


Iijkl �
�2

r�1

�r

2

�

0

�

0
QmiQnj�Imnpq � Smnpq�

	 ��Ar�pqst � Spqst��1QskQtl sin � d� d�

��1

� �p1�ij�kl � �p2��ik�jl � �il�jk� �34�
with

�p1 � 1
15 �p1 � 5�p3 � p4 � 3p5�� �35�

�p2 � 1
15 �p1 � 10p2 � 15p6� �36�

where the parameters p1�…� p6 are given in Eq. (12).
By combining Eqs. (28) and (33), we arrive at the alter-

native expression for the orientation-averaged current stress
norm (square) at a matrix point:

� Hm ��� �� ��� �T ��� �� � �37�
where

� �T ��� P � T · � T � · � P �

� �T 1�ij�kl � �T2��ik�jl � �il�jk� �38�
with

�T1 � �3 �p1 � 2 �p2�2�t1 � 2 �p1�t2�3 �p1 � 4 �p2� �39�

�T2 � 4� �p2�2�t2� �40�

2.2.2. Two-dimensional, planar random fiber orientation
When the spheroidal inclusions are randomly oriented in

the 1-2 plane, the composite is transversely isotropic. Such a
system exists in sheet molding compounds (SMC). The
derivation of effective properties for 2D, plane stress,
random fiber orientation proceeds in the same manner as
in the 3D case. Fig. 2 shows planar coordinates. The local
axes of an inclusion are denoted by the unprimed coordinate
system and the fixed or material axes by the primed one.
Axis 1 is fiber direction. When the randomness exists only
in the 1-2 plane, resulting in a planar (transversely isotropic)
composite, the transformation matrix �lij� becomes

�lij� �
cos � sin � 0

�sin � cos � 0

0 0 1

�
���

	


�� �41�

Similarly, the orientational averaging process, denoted by
R·S� for the planar random orientation can be defined as

R·S �
�

0
�·�P��� d� �42�

where P(�) is the probability density function. In the special
case of uniformly random orientation, we have P��� � 1��
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For any transversely isotropic fourth-rank tensor M
defined in Eq. (19), the following formulation is obtained

RMijklS � 1


�

0
QmiQnjMmnpqQpkQql sin � d�

� �Fijkl��1��2��3��4��5��6� �43�
where

�1 � 3
8 M1 �2 � � 1

8 �M1 � 4M2�
�3 � � 1

8 �M1 � 4M3� �4 � � 1
8 �M1 � 4M4�

�5 � 1
8 �M1 � 4�M3 � M4 � 2M5��

�6 � 1
8 M1 � M2 � M6

�44�

The formulation in Eq. (43) shows that, after the 2D orien-
tational averaging process, any transversely isotropic
fourth-rank tensor will remain so.

Assuming the uniform distribution of overall strains, with
the help of the formulation in Eq. (43), the effective elasti-
city tensor � C� � of 2D random fiber composites can be
obtained as

RC�S � �Fijkl� �c1� �c2� �c3� �c4� �c5� �c6� �45�
where

�c1 � 3
8 �1 �c2 � � 1

8 ��1 � 4�2� �c3 � � 1
8 ��1 � 4�3�

�c4 � � 1
8 ��1 � 4�4� �c5 � 1

8 ��1 � 4��3 � �4 � 2�5��
�c6 � 1

8 �1 � �2 � �6 �46�
The parameters of �1�…� �6 are given in Eq. (3). In addition,
Young’s moduli EL, ET; shear moduli �L, �T; and Poisson’s
ratios 
LT, 
TT, 
TT of the transversely isotropic composites
can be obtained as

EL � �c1 � 4 �c2 � �c3 � �c4 � �c5 � 2 �c6 �
� �c3 � �c5�2
�c5 � �c6

�47�

ET � 4 �c6�� �c1 � 4 �c2 � �c3 � �c4 � �c5 � 2 �c6�� �c5 � �c6� � � �c3 � �c5�2�
� �c1 � 4 �c2 � �c3 � �c4 � �c5 � 2 �c6�� �c5 � 2 �c6� � � �c3 � �c5�2

�48�

�L � �c2 � �c6 �49�

�T � �c6 �50�


LT � �c3 � �c5

2� �c2 � �c5 � �c6� �51�


TL � 2 �c6� �c3 � �c5�
� �c1 � 4 �c2 � �c3 � �c4 � �c5 � 2 �c6�� �c5 � 2 �c6� � � �c3 � �c5�2

�52�


TT � �c5� �c1 � 4 �c2 � �c3 � �c4 � �c5 � 2 �c6� � � �c3 � �c5�2
� �c1 � 4 �c2 � �c3 � �c4 � �c5 � 2 �c6�� �c5 � 2 �c6� � � �c3 � �c5�2

�53�
where the subscripts L and T represent properties along and
at right angles to the fibers.

We now consider the overall elastoplastic responses of
progressively debonded composites with randomly oriented
fibers in the 2D space. By using the orientational averaging
process in Eq. (43), the orientation-averaged square of stress
norm RHmS at any matrix point can be obtained as

RHmS � � o � RTS � � o �54�
where the transversely isotropic fourth-rank tensor RTS is

RTijklS � 1


�

0
lmilnjTmnpqlpklql d� �55�

The components of the positive definite fourth-rank tensor
RTS read

RTijklS � �Fijkl��t1� �t2� �t3� �t4� �t5� �t6� �56�
with

�t1 � 3
8
�t1 �t2 � � 1

8 ��t1 � 4�t2� �t3 � � 1
8 ��t1 � 4�t3�

�t4 � � 1
8 ��t1 � 4�t4� �t5 � 1

8 ��t1 � 4��t3 � �t4 � 2�t5��
�t6 � 1

8
�t1 � �t2 � �t6 �57�

where the parameters �t1�…� �t6 are given in Eq. (6).
Similarly, the relationship between the far-field stress � o

and the macroscopic (orientation-averaged) stress R ��S takes
the form

� o � RPS � R ��S �58�
where the fourth-rank tensor RPS reads

RPSijkl �


Iijkl �
�2

r�1

�r



�

0
QmiQnj�Imnpq � Smnpq�·��Ar�pqst

� Spqst � Spqst��1QskQtl d�

��1

� �Fijkl� �p1� �p2� �p3� �p4� �p5� �p6� �59�
with

�p1 � 3
8 p1 �60�

�p2 � � 1
8 �p1 � 4p2� �61�

�p3 � � 1
8 �p1 � 4p3� �62�

�p4 � � 1
8 �p1 � 4p4� �63�

�p5 � 1
8 �p1 � 4�p3 � p4 � 2p5�� �64�
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�p6 � 1
8 p1 � p2 � p6 �65�

where the parameters p1�…� p6 are given in Eq. (12).
By combining Eqs. (54) and (58), we arrive at the alter-

native expression for the orientation-averaged current stress
norm (square) at a matrix point

RHmS � R ��S � R �TS � R ��S �66�
where

R �TS � RPS T·RTS � RPS � �Fijkl� �T1� �T2� �T3� �T4� �T5� �T6� �67�
with

�T1 � 4 �p1 �p6�t6 � 8� �p1 � 2 �p2 � �p3�� �p2�t2 � �p6�t2 � �p2�t6�
� � �p1 � 4 �p2 � 3 �p3�� �p1�t4 � 4 �p2�t4 � �p4�t4 � 2 �p6�t4

� �p1�t5 � 4 �p2�t5 � 3 �p4�t5 � 2 �p4�t6� � � �p1 � 4 �p2 � �p3

� 2 �p6��2 �p6�t1 � 4 �p2��t1 � 2�t2 � �t3� � �p4��t1 � 4�t2

� 3�t3� � �p1��t1 � 4�t2 � �t3 � 2�t6�� �68�

�T2 � 4� �p2 �p2�t2 � 2 �p2 �p6�t2 � �p6 �p6�t2 � �p2 �p2�t6 � 2 �p2 �p6�t6�
�69�

�T3 � 4 �p3 �p6�t6 � � �p1 �4 �p2 � 3 �p3�� �p3�t4 � �p5�t4 � �p3�t5 � 3 �p5�t5

� 2 �p6�t5 � 2 �p5�t6� � � �p1 � 4 �p2 � �p3 � 2 �p6��2 �p6�t3

� �p5��t1 � 4�t2 � 3�t3� � �p3��t1 � 4�t2 � �t3� � 2�t6��
�70�

�T4 � 4 �p4 �p6�t6 � 8� �p4 � �p5�� �p2�t2 � �p6�t2 � �p2�t6� � � �p4 � 3 �p5

� 2 �p6�� �p1�t4 � 4 �p2�t4 � �p4�t4 � 2 �p6�t4 � �p1�t5 � 4 �p2�t5

� 3 �p4�t5 � 2 �p4�t6� � � �p4 � �p5��2 �p6�t1 � 4 �p2��t1 � 2�t2

� �t3� � �p4��t1 � 4�t2 � 3�t3� � �p1��t1 � 4�t2 � �t3 � 2�t6��
�71�

�T5 � 4 �p5 �p6�t6 � � �p4 �3 �p5 � 2 �p6�� �p3�t4 � �p5�t4 � �p3�t5

� 3 �p5�t5 � 2 �p6�t5 � 2 �p5�t6� � � �p4 � �p5��2 �p6�t3 � �p5��t1

� 4�t2 � 3�t3� � �p3��t1 � 4�t2 � �t3 � 2�t6� �72�

�T6 � 4 �p6 �p6�t6� �73�

2.2.3. Averaged yield function for randomly oriented fiber-
reinforced composites

The ensemble-volume averaged “current stress norm” for
any point in 3D random fiber composites can be defined as��������

�H��x�
�

� �1 � �1�
����������������������������
� �� ��� �T ��� �� �

�
�74�

where � 1 is the current volume fraction of perfectly bonded
fibers. Therefore, the effective yield function for the three-
phase, 3D random fiber composites can be proposed as

�F � �1 � �1� 2 � �� ��� �T ��� �� � �K 2� �ep� �75�
with the isotropic hardening function K� �ep� for the three-
phase composite. The effective ensemble-volume averaged
plastic strain rate for the 3D random fiber composites can be
expressed as

���p � ��
� �F
� ��

� 2�1 � �1� 2 �� � �T ��� �� � �76�

where �� signifies the plastic consistency parameter.
The effective equivalent plastic strain rate for the compo-

site is defined as

��e p �
�����������������������
2
3
���p

�� �T ��1� ���p
�

� 2�1 � �1�2 ��
��������������������������������
2
3 � �� ��� �T ��� �� �

�
�77�

The �� together with the yield function �F must obey the Kuhn-
Tucker loading/unloading conditions. The simple power-law
type isotropic hardening function is employed as an example:

K� �e p� �
���
2
3

�
{�y � h� �e p� �q} �78�

where�y is the initial yield stress, and h and �q signify the linear
and exponential isotropic hardening parameters (respectively)
for the three-phase composite. For 2D, planar random fiber
composites, � �� � and � �T � in Eqs. (74)–(77) are
replaced by R ��S and R �TS� respectively.

3. Progressive fiber debonding

The evolutionary interfacial debonding occurs under
increasing loads or deformations and influences the overall
behavior of randomly oriented, discontinuous fiber-rein-
forced composites. After the interfacial debonding, the
debonded fibers may lose the load-carrying capacity in
the debonded direction and can be regarded as partially
debonded fibers. Within the context of the first-order (nonin-
teracting) approximation, the stresses inside fibers should be
uniform. For convenience, following Zhao and Weng
[13,14] and Ju and Lee [17], the probability of partial
debonding is modeled as a two-parameter, Weibull process.
We employ the average internal stresses of fibers as the
controlling factor. Assuming that the Weibull statistics
govern, the cumulative probability distribution function of
fiber debonding (damage) Pd at the level of hydrostatic
tensile stress can be expressed as

Pd�� ��m�1� � 1 � exp �
� ��m�1

So

� �M� �
�79�

where � ��m�1 � �� �� 11�1 � � �� 22�1 � � �� 33�1��3 is the hydro-
static tensile stresses of the fibers, the subscript (·)1 denotes
the fiber phase, and So and M are the Weibull parameters.
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Therefore, the current partially debonded (damaged) fiber
volume fraction � 2 at a given level of � ��m�1 is given by

�2 � �Pd�� ��m�1� � � 1 � exp �
� ��m�1

So

� �M� �� �
�80�

where � is the original fiber volume fraction.
The internal stresses of fibers required for the initiation of

interfacial debonding can be found in Ju and Lee [17] and
our previous research [18].

4. Examples and discussion

In our previous research [18], we compared the present
analytical predictions with bounds based on Halpin–Tsai
micromechanics equations [22] to validate the proposed
micromechanical framework for aligned, discontinuous
fiber-reinforced composites. One of the advantages of the
Halpin–Tsai equations is that they cover both the particulate
reinforced case (fiber aspect ratio � unity, lower bound) and
the continuous fiber case (fiber aspect ratio � infinity, upper
bound). We plotted the theoretical predictions based on
Halpin–Tsai’s bounds and the proposed method with
various fiber aspect ratios. Clearly, our analytical predic-
tions were well within the Halpin–Tsai’s bounds (see Fig.
2 in Lee and Simunovic [18]).

To illustrate the elastoplastic behavior of the present
damage constitutive framework, our present damage models
for 2D and 3D random fiber composites considering inter-
facial debonding are presented in Figs. 3–5. The material
properties of random fiber composites involving these simu-

lations are E0 � 3�0 GPa� 
0 � 0�35� E1 � 380 GPa� 
1 �
0�25� 	 � 20� �y � 125 MPa� h � 400 MPa� and �q � 0�5�
In addition, to implement the proposed probabilistic micro-
mechanics based on Weibull function into the present
constitutive models, we need to estimate the values of
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Fig. 3. Stress–strain relations of a two-dimensional random fiber-reinforced
composite under uniform deformations.

Fig. 4. Effect of the initial volume fraction of fibers on the overall elasto-
plastic damage behavior of three-dimensional random fiber-reinforced
composites.

Fig. 5. The predicted evolution of debonded fiber volume fraction corre-
sponding to Fig. 4.



Weibull partameters So and M. For simplicity, we assume
the Weibull parameters to be So � 16�35 × �y and M � 4�
First, the stress–strain relations of a 2D random fiber-rein-
forced composite under uniform deformations for the planar
random orientation are presented in Fig. 3. It shows a typical

transversely isotropic behavior as expected. Fig. 4 exhibits
the effect of the initial volume fraction of fibers on the
behavior and progressive debonding of 3D random fiber
composites and includes the results for perfect composites
shown by solid lines and debonded composites shown by
dashed lines. More interfacial debonding is observed for
high-fiber volume fraction �� � 0�5� composites. Fig. 5
shows the evolutions of debonded fiber volume fraction as
a function of the uniaxial strain. It is seen that the composite
with high initial volume fraction of fibers is stiffer, but the
influence of damage on the stress–strain response of the
composite is more drastic because of quick damage evolution.

We further compare our prediction with the experimental
data provided by Meraghni and Benzeggagh [10] for 3D
random fiber composites. Here, we adopt the elastic proper-
ties, aspect ratio, and fiber volume fraction according to
Mergahni and Benzeggagh [10] as follows: E0 � 3�0 GPa�

0 � 0�35� E1 � 72 GPa� 
1 � 0�17� 	 � 19�25� and �1 �
0�5� Using the parameter estimation algorithm developed by
Ju et al. [23] and Simo et al. [24], we estimate the plastic
parameters �y� h� and �q in accordance with the isotropic
hardening law given in Eq. (78) and Weibull parameters
So and M for evolutionary debonding to be �y �
150 MPa� h � 400 MPa� �q � 0�5� So � 27�14 × �y� and
M � 4�0� We depict our prediction against the experimental
data provided by Meraghni and Benzeggagh [10] in Figs. 6
and 7. Due to the small-strain constraint, we do not display
our prediction beyond �11 � 0�012� Since our formulation
does not consider inter-fiber interaction, the stress–strain
curve for the present prediction is lower than that based
on the experiment in the early stage. Naturally, the overall
stiffness of interacting damage model is higher than that of
noninteracting damage model [19]. As the strain increases,
the effect of damage becomes the dominant one; therefore,
the curves corresponding to the present prediction and the
experiment will intersect each other because the proposed
damage constitutive model includes the interfacial debond-
ing only. Therefore, it is concluded that the interaction effect
among constituents must be considered in modeling damage
behavior of composites for both moderately and extremely
high fiber volume fraction. Furthermore, other damage
mechanisms (e.g. matrix cracking, void nucleation, etc.)
must be included in the damage constitutive models to
offer more realistic damage predictions.

Finally, the present model does not account for other
damage mechanisms because these effects are beyond the
scope of the present work. In spite of these limitations, the
agreement between the present predictions and experiments
is encouraging for possible use of the proposed damage
constitutive models for predicting the progressive damage
in composite structures. The present micromechanical
constitutive model also establishes the theoretical founda-
tion needed for simulation of progressive crushing of
composite structures. In a forthcoming paper, implementa-
tion of the proposed damage models into finite element
program DYNA3D will be presented to show the dynamic
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Fig. 6. The prediction between the present prediction and experimental data
for overall uniaxial tensile responses of randomly oriented discontinuous
fiber composites with initial fiber volume fraction of 0.5.

Fig. 7. The predicted evolution of debonded fiber volume fraction versus
strain corresponding to Fig. 6.



inelastic behavior and progressive crushing in composites
under impact loading. Specifically, inter-fiber interactions,
microcrack-weakened composites, large-strain formulation,
and finite element examples will be addressed.
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