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Fundamental issues on progressive crushing in RFPCs
under impact loading

Micromechanical material models

Damage evolution

Numerical simulations and experimental comparison
Finite element implementation for impact simulation

Future efforts




- Damage evolution under impact

- Faillure mechanisms

* Energy dissipation

* Failure prediction and damage constitutive modeling for
composite structures




- Based on micromechanical formulation and
combination of micro- and macro-mechanical damage
criteria

- Ensemble volume averaging process and effects of
elgenstrains

- Two- and three-dimensional damage constitutive
models

* Implemented into finite element code DYNAS3D to
simulate crashworthiness of composites




* Allow for prediction of local stress and strain fields in
each constituents

- Used for rigorous analysis of composite structures on a
fine scale

- Applicable for composite materials with randomly
oriented discontinuous fibers

* Incorporate probabilistic micromechanics for
evolutionary damage in composite materials
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Effective elastic moduli of multi-phase composites containing
randomly located, aligned elastic ellipsoids

C.=Co-{I+B-0I—-S-B)"'}

Total stress at any point x in the matrix

ocxX)=0°+0'(x)

in which o° and o’ are defined as
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Ensemble-averaged stress norm for any matrix point X
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Effective yield function for fiber-reinforced composites

F=(1-9¢)*6:T:5 - K*&)

where the isotropic hardening function K (€”) is defined as

K@) = \/g {0, +h(&)7)




Orientational averaging process

Governing equations for randomly oriented fiber-reinforced
composites
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Weibull probabilistic distribution function for fiber debonding
(damage)

Current debonded (damaged) fiber volume fraction

b2 = dP[(Gm)1] = & {1 ~exp [_ ((&;)1

Average internal stresses of fibers
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- Comparison between
proposed predictions and Halpin-

Figura 1. The comparison between the proposed predictions with various i’
fiber aspect ratios and Halpin-Teai's bounds for affective Young's Tsal S bo u n d S
modulus in the fiber direction vs. fiber volume fraction.
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Experimental comparison
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- Effects of fiber-interaction and other damage mechanisms




* Implementation into explicit finite element code
DYNA3D, since impact simulation requires a very small
time step integration

- Strain driven algorithm to implement into displacement
based finite element code DYNA3D

- Micromechanical iterative algorithm for progressive
damage model

* Prediction of dynamic response of composite structures
and elimination of need for expensive large-scale
experiments
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Impact simulation
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- Displacement in the x-direction during impact




Impact simulation
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- Displacement in the z-direction during impact




Impact simulation
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- Damage index during
impact simulation
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- Vibration relative to
equilibrium position
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Impact simulation
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Composite Tube

- Drop tower test for
composite tube




Impact simulation (drop tower test simulation)

e+ 00, shell 11391

 von-Mises effective stress
during impact




Impact simulation (drop tower test simulation)

- Damage contour during impact




- Damage constitutive model based on micro-mechnical
framework and micro- and macro-mechanical damage
criteria to predict damage behavior of RFPCs

- Composite materials reinforced with randomly oriented

discontinuous fibers
* Analytical bounds and experimental data

- Experimental work for determining model parameters
and damage variables




* Large deformation formulation for dealing with negative
stiffness zone

- Examples of uniaxial, biaxial and triaxial tensions and
compressions

* Interaction effects among constituents and effect of
matrix microcracks on overall stiffness

* Evolutions of microcrack density and volume fraction of
damaged fibers




* Acoustic emission (AE) analysis for monitoring damage
Initiation and evolution under static and dynamic loads

- Impact damage characterization using drop weight test
frame and NDE technique

* Correlation between received acoustic wave and
damage models in monitoring damage evolution




* Applying two-dimensional/distributive orientational

averaging process for transversely isotropic composites
with randomly oriented fibers in the 1-2 plane

* Modeling of microcrack-weakened composites

* Development of new failure criteria for randomly

oriented, discontinuous fiber composites under impact
loading




- Extending the present damage to be able to account for
fiber interactions for the composite with high fiber
volume fraction

- Employing large deformation theory for high ductility of
organic matrix composite materials

* Modeling of tube crush tests to determine the validity of
the current damage constitutive models

* Nondestructive testing to validate micromechanics
model




